>
JUST IN: New Details About the Six Suspended Secret Service Agents Connected to Trump...
Prince Andrew Now Cleared for International Travel as Trump's FBI Closes His Investigation...
Moderna's COVID-19 Vaccine Spikevax Receives Full FDA Approval for Children...
Trump Throws Support Behind RINO and Warmonger Lindsey Graham's Reelection Bid
Insulator Becomes Conducting Semiconductor And Could Make Superelastic Silicone Solar Panels
Slate Truck's Under $20,000 Price Tag Just Became A Political Casualty
Wisdom Teeth Contain Unique Stem Cell That Can Form Cartilage, Neurons, and Heart Tissue
Hay fever breakthrough: 'Molecular shield' blocks allergy trigger at the site
AI Getting Better at Medical Diagnosis
Tesla Starting Integration of XAI Grok With Cars in Week or So
Bifacial Solar Panels: Everything You NEED to Know Before You Buy
INVASION of the TOXIC FOOD DYES:
Let's Test a Mr Robot Attack on the New Thunderbird for Mobile
Facial Recognition - Another Expanding Wolf in Sheep's Clothing Technology
GPT-4 can output 25000 words. GPT-4 can write a higher quality novel while GPT3.5 could only output a very short story.
GPT-4 can score 1410 on the SAT tests vs 1260 for GPT 3.5.
GPT-4 can score 161 on the LSAT vs 149 for GPT 3.5.
GPT-4 can score 99 percentil for GRE (high school equivalent) verbal test vs 63 percentile for GPT3.5.
GPT-4 is a Transformer based model pre-trained to predict the next token in a document. The post-training alignment process results in improved performance on measures of factuality and adherence to desired behavior. A core component of this project was developing infrastructure and optimization methods that behave predictably across a wide range of scales. This allowed us to accurately predict some aspects of GPT-4's performance based on models trained with no more than 1/1,000th the compute of GPT-4.
A large focus of the GPT-4 project was building a deep learning stack that scales predictably. The primary reason is that for very large training runs like GPT-4, it is not feasible to do extensive model-specific tuning. To address this, we developed infrastructure and optimization methods that have very predictable behavior across multiple scales. These improvements allowed us to reliably predict some aspects of the performance of GPT-4 from smaller models trained using 1, 000× –10, 000× less compute.