>
Remember back in 2022 when John Bolton "slipped" & admitted that he's helped plan Coup
What Are The Real Reasons Behind Washington's Latest Show Of Force Against Venezuela?
Video Games At 30,000 Feet? Starlink's Airline Rollout Is Making It Reality
Automating Pregnancy through Robot Surrogates
SpaceX launches Space Force's X-37B space plane on 8th mystery mission (video)
This New Bionic Knee Is Changing the Game for Lower Leg Amputees
Grok 4 Vending Machine Win, Stealth Grok 4 coding Leading to Possible AGI with Grok 5
Venus Aerospace Hypersonic Engine Breakthroughs
Chinese Scientists Produce 'Impossible' Steel to Line Nuclear Fusion Reactors in Major Break
1,000 miles: EV range world record demolished ... by a pickup truck
Fermented Stevia Extract Kills Pancreatic Cancer Cells In Lab Tests
In the future, wires might cross underneath oceans to effortlessly deliver electricity from one continent to another. Those cables would carry currents from giant wind turbines or power the magnets of levitating high-speed trains.
All these technologies rely on a long-sought wonder of the physics world: superconductivity, a heightened physical property that lets metal carry an electric current without losing any juice.
But superconductivity has only functioned at freezing temperatures that are far too cold for most devices. To make it more useful, scientists have to recreate the same conditions at regular temperatures. And even though physicists have known about superconductivity since 1911, a room-temperature superconductor still evades them, like a mirage in the desert.