>
Episode 403: THE POLITICS OF POLIO
Google Versus xAI AI Compute Scaling
OpenAI Releases O3 Model With High Performance and High Cost
WE FOUND OUT WHAT THE DRONES ARE!! ft. Dr. Steven Greer
"I am Exposing the Whole Damn Thing!" (MIND BLOWING!!!!) | Randall Carlson
Researchers reveal how humans could regenerate lost body parts
Antimatter Propulsion Is Still Far Away, But It Could Change Everything
Meet Rudolph Diesel, inventor of the diesel engine
China Looks To Build The Largest Human-Made Object In Space
Ferries, Planes Line up to Purchase 'Solar Diesel' a Cutting-Edge Low-Carbon Fuel...
"UK scientists have created an everlasting battery in a diamond
First look at jet-powered VTOL X-plane for DARPA program
Billions of People Could Benefit from This Breakthrough in Desalination That Ensures...
Tiny Wankel engine packs a power punch above its weight class
In the future, wires might cross underneath oceans to effortlessly deliver electricity from one continent to another. Those cables would carry currents from giant wind turbines or power the magnets of levitating high-speed trains.
All these technologies rely on a long-sought wonder of the physics world: superconductivity, a heightened physical property that lets metal carry an electric current without losing any juice.
But superconductivity has only functioned at freezing temperatures that are far too cold for most devices. To make it more useful, scientists have to recreate the same conditions at regular temperatures. And even though physicists have known about superconductivity since 1911, a room-temperature superconductor still evades them, like a mirage in the desert.