>
The 3 Reasons Behind US Plot to Depose Venezuela's Maduro – Video #254
Evangelicals and the Veneration of Israel
Zohran Mamdani's Socialist Recipe for Economic Destruction
BREAKING: Fed-Up Citizens Sue New York AG Letitia James for Voter Intimidation...
HUGE 32kWh LiFePO4 DIY Battery w/ 628Ah Cells! 90 Minute Build
What Has Bitcoin Become 17 Years After Satoshi Nakamoto Published The Whitepaper?
Japan just injected artificial blood into a human. No blood type needed. No refrigeration.
The 6 Best LLM Tools To Run Models Locally
Testing My First Sodium-Ion Solar Battery
A man once paralyzed from the waist down now stands on his own, not with machines or wires,...
Review: Thumb-sized thermal camera turns your phone into a smart tool
Army To Bring Nuclear Microreactors To Its Bases By 2028
Nissan Says It's On Track For Solid-State Batteries That Double EV Range By 2028

In the future, wires might cross underneath oceans to effortlessly deliver electricity from one continent to another. Those cables would carry currents from giant wind turbines or power the magnets of levitating high-speed trains.
All these technologies rely on a long-sought wonder of the physics world: superconductivity, a heightened physical property that lets metal carry an electric current without losing any juice.
But superconductivity has only functioned at freezing temperatures that are far too cold for most devices. To make it more useful, scientists have to recreate the same conditions at regular temperatures. And even though physicists have known about superconductivity since 1911, a room-temperature superconductor still evades them, like a mirage in the desert.