>
Wise words (Elon Musk responding to Ron Paul's tweet on the Big Beautiful Bill)
People Are Being Involuntarily Committed, Jailed After Spiraling Into "ChatGPT Psychosis"
Dr. Lee Merritt: What You Need to Know About Parasites and Biowarfare
How We Manage a Garden With 11 Kids (2025 Garden Tour)
xAI Grok 3.5 Renamed Grok 4 and Has Specialized Coding Model
AI goes full HAL: Blackmail, espionage, and murder to avoid shutdown
BREAKING UPDATE Neuralink and Optimus
1900 Scientists Say 'Climate Change Not Caused By CO2' – The Real Environment Movement...
New molecule could create stamp-sized drives with 100x more storage
DARPA fast tracks flight tests for new military drones
ChatGPT May Be Eroding Critical Thinking Skills, According to a New MIT Study
How China Won the Thorium Nuclear Energy Race
Sunlight-Powered Catalyst Supercharges Green Hydrogen Production by 800%
Terran Orbit has set a new record for transmitting at high-speed from space to Earth as NASA's Pathfinder Technology Demonstrator 3 (PTD-3) CubeSat used an optical laser system to beam data from 300 miles (480 km) up to a ground station at a rate of 200 gigabits per second.
The advance of space travel since the first Sputnik launch in 1957 has been one of paradox. Humanity has gone from lofting crude orbital packages that couldn't do more than go "beep beep" with monotonous regularity, to sending robotic rovers to Mars, probing the atmospheres of Jupiter and Titan, visiting every planet in the solar system, and sending our uncrewed emissaries on one-way voyages into interstellar space.
Despite this, space communications have been stuck decades in the past, still relying on X-band radio. Set at 7.25 GHz to 7.75 GHz and 7.9 GHz to 8.4 GHz, it has been the standard for satellite transmissions for a number of reasons – not the least of which is that it can penetrate through water-laden clouds.
However it also has ridiculously little bandwidth. The rates vary with transmitter and receiver configuration, but a 45-cm (18-in) antenna can achieve a data rate of 10 Mbit/s and the Hubble Space Telescope can only handle about 10 terabytes per year.
To overcome this, NASA and its commercial partners are developing laser-based alternatives. In this case, the TeraByte InfraRed Delivery (TBIRD) payload, which is funded by the NASA Space Communications and Navigation (SCaN) and developed by the MIT Lincoln Laboratory.
According to Terran Orbital, this new capability will allow satellites to transmit terabytes of data with each pass over a ground station. In addition it will allow for major advances in existing technologies, including space-based earth observation systems and synthetic aperture radars.