>
Google Leaks: Censorship Exposed
Great Food Reset - Meat rationing has arrived!
Are The "Barbarians" Already Here?
Insulin-free life for diabetics closer after successful cell pouch trial
[Tesla] AI Revolution: Robot Workers, Supercomputer Demands, & Mind-Blowing Designs!
Aviation Week Believes Secret SR-72 Plane is in Production at Lockheed Martin
"Suspended animation" drug could buy time in medical emergencies
Simple technique removes over 98% of nanoplastic particles from water
We are Being Tracked on the Internet Via Our Phone Number! Zero Anonymity
What Can Solve the Huge Energy Demands of a Future with Abundant AI?
Mosquitoes can fly but they can't hide from the Bzigo Iris
Nuclear waste powered battery produces thousands of years of clean energy
Terran Orbit has set a new record for transmitting at high-speed from space to Earth as NASA's Pathfinder Technology Demonstrator 3 (PTD-3) CubeSat used an optical laser system to beam data from 300 miles (480 km) up to a ground station at a rate of 200 gigabits per second.
The advance of space travel since the first Sputnik launch in 1957 has been one of paradox. Humanity has gone from lofting crude orbital packages that couldn't do more than go "beep beep" with monotonous regularity, to sending robotic rovers to Mars, probing the atmospheres of Jupiter and Titan, visiting every planet in the solar system, and sending our uncrewed emissaries on one-way voyages into interstellar space.
Despite this, space communications have been stuck decades in the past, still relying on X-band radio. Set at 7.25 GHz to 7.75 GHz and 7.9 GHz to 8.4 GHz, it has been the standard for satellite transmissions for a number of reasons – not the least of which is that it can penetrate through water-laden clouds.
However it also has ridiculously little bandwidth. The rates vary with transmitter and receiver configuration, but a 45-cm (18-in) antenna can achieve a data rate of 10 Mbit/s and the Hubble Space Telescope can only handle about 10 terabytes per year.
To overcome this, NASA and its commercial partners are developing laser-based alternatives. In this case, the TeraByte InfraRed Delivery (TBIRD) payload, which is funded by the NASA Space Communications and Navigation (SCaN) and developed by the MIT Lincoln Laboratory.
According to Terran Orbital, this new capability will allow satellites to transmit terabytes of data with each pass over a ground station. In addition it will allow for major advances in existing technologies, including space-based earth observation systems and synthetic aperture radars.