>
Cremation Ovens, Teeth and Torture: Grisly 'Extermination Camp' Found In Mexico
SpaceX Unmanned Starships to Mars 2026 and Manned 2029 or 2031
Maine Court Rules Against Family of Child Vaccinated Without Parents' Consent at School
3D-Printed Gun Components - Part 1, by M.B.
2 MW Nuclear Fusion Propulsion in Orbit Demo of Components in 2027
FCC Allows SpaceX Starlink Direct to Cellphone Power for 4G/5G Speeds
How Big Tech Plans To Read Your Mind
First electric seaglider finally hits the water with real passengers
Construction, Power Timeline for xAI to Reach a 3 Million GPU Supercluster
Sea sponges inspire super strong material for more durable buildings
X1 Pro laser welder as easy to use as a hot glue gun
What does "PhD-level" AI mean? OpenAI's rumored $20,000 agent plan explained.
Terran Orbit has set a new record for transmitting at high-speed from space to Earth as NASA's Pathfinder Technology Demonstrator 3 (PTD-3) CubeSat used an optical laser system to beam data from 300 miles (480 km) up to a ground station at a rate of 200 gigabits per second.
The advance of space travel since the first Sputnik launch in 1957 has been one of paradox. Humanity has gone from lofting crude orbital packages that couldn't do more than go "beep beep" with monotonous regularity, to sending robotic rovers to Mars, probing the atmospheres of Jupiter and Titan, visiting every planet in the solar system, and sending our uncrewed emissaries on one-way voyages into interstellar space.
Despite this, space communications have been stuck decades in the past, still relying on X-band radio. Set at 7.25 GHz to 7.75 GHz and 7.9 GHz to 8.4 GHz, it has been the standard for satellite transmissions for a number of reasons – not the least of which is that it can penetrate through water-laden clouds.
However it also has ridiculously little bandwidth. The rates vary with transmitter and receiver configuration, but a 45-cm (18-in) antenna can achieve a data rate of 10 Mbit/s and the Hubble Space Telescope can only handle about 10 terabytes per year.
To overcome this, NASA and its commercial partners are developing laser-based alternatives. In this case, the TeraByte InfraRed Delivery (TBIRD) payload, which is funded by the NASA Space Communications and Navigation (SCaN) and developed by the MIT Lincoln Laboratory.
According to Terran Orbital, this new capability will allow satellites to transmit terabytes of data with each pass over a ground station. In addition it will allow for major advances in existing technologies, including space-based earth observation systems and synthetic aperture radars.