>
DeepSeek will SHATTER AI Barriers with V4 Release
The Disposable Home Epidemic: Why New Houses Are Built to Rot
They Studied All Fasting Lengths, This Dropped the Most Fat (12hr, 16hr, 24hr, 36hr)
Elon Musk says 'WOW' – Democrat California is going to be 100x the Democrat fraud of Minneso
NASA announces strongest evidence yet for ancient life on Mars
Caltech has successfully demonstrated wireless energy transfer...
The TZLA Plasma Files: The Secret Health Sovereignty Tech That Uncle Trump And The CIA Tried To Bury
Nano Nuclear Enters The Asian Market
Superheat Unveils the H1: A Revolutionary Bitcoin-Mining Water Heater at CES 2026
World's most powerful hypergravity machine is 1,900X stronger than Earth
New battery idea gets lots of power out of unusual sulfur chemistry
Anti-Aging Drug Regrows Knee Cartilage in Major Breakthrough That Could End Knee Replacements
Scientists say recent advances in Quantum Entanglement...
Solid-State Batteries Are In 'Trailblazer' Mode. What's Holding Them Up?

Scientists from the Baylor College of Medicine are revealing how the fungus Candida albicans enters the brain, triggers mechanisms that aid in its clearance, and generates toxic protein fragments known as amyloid beta (Ab)-like peptides — a key player in Alzheimer's disease development.
"Our lab has years of experience studying fungi, so we embarked on the study of the connection between C. albicans and Alzheimer's disease in animal models," says study corresponding author Dr. David Corry, the Fulbright Endowed Chair in Pathology and a professor of pathology and immunology and medicine at Baylor, in a university release. "In 2019, we reported that C. albicans does get into the brain where it produces changes that are very similar to what is seen in Alzheimer's disease. The current study extends that work to understand the molecular mechanisms."
The study first sought to unravel how Candida albicans gains access to the brain. Researchers discovered that the fungus produces enzymes called secreted aspartic proteases (Saps), which break down the blood-brain barrier — a protective barrier that usually prevents harmful substances from entering the brain. This breach allows the fungus to infiltrate the brain and cause damage.
The next question posed by the researchers was how the brain effectively clears the fungus. Previous research has shown that C. albicans brain infections resolve entirely in healthy mice after 10 days. In this study, the team unveiled two mechanisms triggered by the fungus in microglia brain cells, which play a crucial role in the brain's immune response.
"The same Saps that the fungus uses to break the blood-brain barrier also break down the amyloid precursor protein into Ab-like peptides," says study first author Dr. Yifan Wu, postdoctoral scientist in pediatrics working in the Corry lab. "These peptides activate microglial brain cells via a cell surface receptor called Toll-like receptor 4, which keeps the fungi load low in the brain, but does not clear the infection."