>
Trump's Bold 2016 Campaign Talking Point That Ignited Nationwide Controversy
Warfare is beginning to look more like a science fiction film.
Muscle-powered mechanism desalinates up to 8 liters of seawater per hour
Student-built rocket breaks space altitude record as it hits hypersonic speeds
Researchers discover revolutionary material that could shatter limits of traditional solar panels
In case you missed it, Ben Affleck just dropped the best talk on AI and where we're heading:
LG flexes its display muscle with stretchable micro-LED screen
LiFePO4 Charging Guidelines: What is 100%? What is 0%?! How to Balance??
Skynet On Wheels: Chinese Tech Firm Reveals Terrifying Robo-Dog
Energy company claims its new fusion technology can provide heat and power to 70,000 homes:
Wi-Fi Can be Used to Influence Brainwaves, Has Potential for Hypnotic Effects and Social Engineering
Startups Like Neuralink And Science Corp. Are Aiming To Help The Blind See Again
It's opened the door to developing a drug to treat the condition for which existing painkillers do little.
Diabetes, chemotherapy drugs, multiple sclerosis, injuries and amputations have all been associated with neuropathic pain, usually caused by damage to nerves in various body tissues, including the skin, muscles and joints. Mechanical hypersensitivity – or mechanical allodynia – is a major symptom of neuropathic pain, where innocuous stimuli like light touch cause severe pain.
Many available pain medications aren't effective in reducing this often-debilitating type of chronic pain. However, researchers at the University of Texas at Austin (UT Austin), in collaboration with UT Dallas and the University of Miami, may have advanced the treatment of neuropathic pain by discovering a molecule that reduces mechanical hypersensitivity in mice.
"We found it to be an effective painkiller, and the effects were rather long-lived," said Stephen Martin, a co-corresponding author of the study. "When we tested it on different models, diabetic neuropathy and chemotherapy-induced neuropathy, for example, we found this compound has an incredible beneficial effect."
The compound is FEM-1689, which binds to the sigma 2 receptor (σ2R), which was identified in 2017 as transmembrane protein 97 (TMEM97). The researchers had previously found that several small molecules that bind selectively to σ2R/TMEM97 produce strong and long-lasting anti-neuropathic pain effects in mice. FEM-1689, one such small molecule, was found to have improved selectivity for σ2R/TMEM97.