>
Is Donald Trump Intent Upon Imposing Martial Law in America?
Must-See Report! NATO Claims Putin Preparing To Attack Europe As Russia Enters 'Phase Zero'
UK Digital ID: The BritCard Bait And Switch
Wave Of Antifa Terror Continues In Germany:
SEMI-NEWS/SEMI-SATIRE: October 12, 2025 Edition
Stem Cell Breakthrough for People with Parkinson's
Linux Will Work For You. Time to Dump Windows 10. And Don't Bother with Windows 11
XAI Using $18 Billion to Get 300,000 More Nvidia B200 Chips
Immortal Monkeys? Not Quite, But Scientists Just Reversed Aging With 'Super' Stem Cells
ICE To Buy Tool That Tracks Locations Of Hundreds Of Millions Of Phones Every Day
Yixiang 16kWh Battery For $1,920!? New Design!
Find a COMPATIBLE Linux Computer for $200+: Roadmap to Linux. Part 1
Bionic hand with NO brain implants?!
Nano-cubosome eyedrops target macular degeneration without needles
In the wake of a Hong Kong fraud case that saw an employee transfer US$25 million in funds to five bank accounts after a virtual meeting with what turned out to be audio-video deepfakes of senior management, the biometrics and digital identity world is on high alert, and the threats are growing more sophisticated by the day.
A blog post by Chenta Lee, chief architect of threat intelligence at IBM Security, breaks down how researchers from IBM X-Force successfully intercepted and covertly hijacked a live conversation by using LLM to understand the conversation and manipulate it for malicious purposes – without the speakers knowing it was happening.
"Alarmingly," writes Lee, "it was fairly easy to construct this highly intrusive capability, creating a significant concern about its use by an attacker driven by monetary incentives and limited to no lawful boundary."
Hack used a mix of AI technologies and a focus on keywords
By combining large language models (LLM), speech-to-text, text-to-speech and voice cloning tactics, X-Force was able to dynamically modify the context and content of a live phone conversation. The method eschewed the use of generative AI to create a whole fake voice and focused instead on replacing keywords in context – for example, masking a spoken real bank account number with an AI-generated one. Tactics can be deployed through a number of vectors, such as malware or compromised VOIP services. A three second audio sample is enough to create a convincing voice clone, and the LLM takes care of parsing and semantics.