>
Putin Calls Up 160,000 Men to Russian Army in Latest Conscription Drive, at Crucial Moment...
ELECTION FRAUD AGAIN: Liberal Susan Crawford did not win the election last night.
NATO WENT EVIL IN THE EU: Marine Le Pen, the NATO op to get her, the context around it...
The DOGE of War: TOP 10 MEMES – Watch MAGA
Watch the Jetson Personal Air Vehicle take flight, then order your own
Microneedles extract harmful cells, deliver drugs into chronic wounds
SpaceX Gigabay Will Help Increase Starship Production to Goal of 365 Ships Per Year
Nearly 100% of bacterial infections can now be identified in under 3 hours
World's first long-life sodium-ion power bank launched
3D-Printed Gun Components - Part 1, by M.B.
2 MW Nuclear Fusion Propulsion in Orbit Demo of Components in 2027
FCC Allows SpaceX Starlink Direct to Cellphone Power for 4G/5G Speeds
Scientists have discovered the biological mechanism of hearing loss caused by loud noise, which helped them find a way to prevent it.
When exposed to loud noises some people experience temporary or even permanent hearing loss or drastic changes in their perception of sound after the loud noises stop.
Researchers from the University of Pittsburgh in the US have now discovered that this noise-induced hearing loss stems from cellular damage in the inner ear that is associated with the excess of free-floating zinc, a mineral that is essential for proper cellular function and hearing.
Their experiments showed drugs that work as molecular sponges trapping excess zinc can help restore lost hearing, or if administered before an expected loud sound exposure, can protect from hearing loss.
"Noise-induced hearing loss can be debilitating. Some people start hearing sounds that aren't there, developing a condition called tinnitus, which severely affects a person's quality of life," said Professor Thanos Tzounopoulos from the Pittsburgh Hearing Research Center.
"Noise-induced hearing loss impairs millions of lives but, because the biology of hearing loss is not fully understood, preventing hearing loss has been an ongoing challenge."
To get their results, published in the journal Proceedings of the National Academy of Sciences, the team studied the inner ear cells of mice.
They found that hours after mice are exposed to loud noise, their inner ear zinc level spikes which, ultimately, leads to cellular damage and disrupts normal cell-to-cell communication.