>
Episode 403: THE POLITICS OF POLIO
Google Versus xAI AI Compute Scaling
OpenAI Releases O3 Model With High Performance and High Cost
WE FOUND OUT WHAT THE DRONES ARE!! ft. Dr. Steven Greer
"I am Exposing the Whole Damn Thing!" (MIND BLOWING!!!!) | Randall Carlson
Researchers reveal how humans could regenerate lost body parts
Antimatter Propulsion Is Still Far Away, But It Could Change Everything
Meet Rudolph Diesel, inventor of the diesel engine
China Looks To Build The Largest Human-Made Object In Space
Ferries, Planes Line up to Purchase 'Solar Diesel' a Cutting-Edge Low-Carbon Fuel...
"UK scientists have created an everlasting battery in a diamond
First look at jet-powered VTOL X-plane for DARPA program
Billions of People Could Benefit from This Breakthrough in Desalination That Ensures...
Tiny Wankel engine packs a power punch above its weight class
Enthusiasm is increasing worldwide for small modular reactors (SMRs) and advanced modular reactors (AMRs).
The International Atomic Energy Agency describes SMRs as "advanced nuclear reactors that have a power capacity of up to 300 MWe [megawatts electric] per unit, which is about one-third of the generating capacity of traditional nuclear power reactors."
SMRs can be sited on locations not suitable for larger nuclear power plants, while prefabricated units of SMRs can be manufactured and then shipped and installed on site, which should make them more affordable. An SMR can be installed into an existing grid or remotely off-grid, as a function of its smaller electrical output. SMRs are also considered to be safer and to have reduced fuel requirements.
Currently more than 80 commercial SMR designs are being developed around the world targeting varied outputs and different applications such as electricity, hybrid energy systems, heating, water desalinization and steam for industrial applications. These include a wide range of different reactor technologies – from those based on smaller versions of established pressurized water reactor designs to the much more complex molten salt reactors and fast reactors.
While some of these designs are being developed by established nuclear companies, often with government support, others are being put forward by start-up companies with an eye on the main chance but very little technological expertise.
Though SMRs have lower upfront capital cost per unit, their economic competitiveness is still to be proven in practice once they are deployed. Currently, SMRs are under construction or in the licensing stage in Argentina, Canada, China, Russia, South Korea and the United States.
To date, only Russia and China have operating SMRs. Russia's Akademik Lomonosov, the world's first floating nuclear power plant (FNPP) began commercial operation in May 2020. China's HTR-PM, a pebble-bed modular high-temperature gas-cooled reactor (HTGR) began commercial operation in December 2023.