>
                    
                    
                    
                    
                    
This roof paint blocks 97% of sunlight and pulls water from the air
'Venomous' Republican split over Israel hits new low as fiery feud reaches White House
Disease-ridden monkey that escaped from research facility shot dead by vigilante mom protecting...
Hooters returns - founders say survival hinges on uniform change after buying chain...
The 6 Best LLM Tools To Run Models Locally
 Testing My First Sodium-Ion Solar Battery 
A man once paralyzed from the waist down now stands on his own, not with machines or wires,...
Review: Thumb-sized thermal camera turns your phone into a smart tool
Army To Bring Nuclear Microreactors To Its Bases By 2028
Nissan Says It's On Track For Solid-State Batteries That Double EV Range By 2028
Carbon based computers that run on iron
 Russia flies strategic cruise missile propelled by a nuclear engine 
100% Free AC & Heat from SOLAR! Airspool Mini Split AC from Santan Solar | Unboxing & Install 
Engineers Discovered the Spectacular Secret to Making 17x Stronger Cement

Concrete and its most important ingredient, cement, is one of the most carbon-intensive industries on Earth because it's used so often in construction. It has virtually no parallels for the ease of use, versatility, and structural properties, but emits about 0.6 tons of carbon per 1 ton of cement mixture produced according to Imperial College London.
US firm Carbon Upcycling Technologies, in collaboration with the Minnesota Department of Transportation (MnDOT) has successfully completed a three-year study on the use of the company's low-carbon cement in highways.
The results highlight Carbon Upcycling's ability to be a drop-in solution for reducing carbon-intensive cement in concrete, while saving money and making stronger roads.
The work in the study was carried out by Sutter Engineering and sponsored by the National Road Research Alliance (NRRA). It rigorously tested 16 unique concrete mixtures in real-world conditions on an active Minnesota highway to identify options that could reduce the carbon footprint of infrastructure without sacrificing strength or durability.
Completed in early 2024, the study aimed to find materials that could significantly lower the carbon footprint of concrete paving without compromising durability. Carbon Upcycling's CO2-enhanced mix achieved a 12.5% reduction in cement content while matching the workability of traditional concrete, allowing seamless handling, placement, and setting times for construction crews.
"Infrastructure is the very foundation of a sustainable future, and at Carbon Upcycling we're committed to creating materials that support this vision while establishing a secure, stable North American supply chain," said Apoorv Sinha, CEO of Carbon Upcycling.
"Our collaboration with the Minnesota Department of Transportation highlights how Carbon Upcycling can transform captured emissions into local materials that strengthen our infrastructure. By focusing on resilience and sustainability, we're contributing to a vision where our essential structures are clean and built to last."