>
Episode 403: THE POLITICS OF POLIO
Google Versus xAI AI Compute Scaling
OpenAI Releases O3 Model With High Performance and High Cost
WE FOUND OUT WHAT THE DRONES ARE!! ft. Dr. Steven Greer
"I am Exposing the Whole Damn Thing!" (MIND BLOWING!!!!) | Randall Carlson
Researchers reveal how humans could regenerate lost body parts
Antimatter Propulsion Is Still Far Away, But It Could Change Everything
Meet Rudolph Diesel, inventor of the diesel engine
China Looks To Build The Largest Human-Made Object In Space
Ferries, Planes Line up to Purchase 'Solar Diesel' a Cutting-Edge Low-Carbon Fuel...
"UK scientists have created an everlasting battery in a diamond
First look at jet-powered VTOL X-plane for DARPA program
Billions of People Could Benefit from This Breakthrough in Desalination That Ensures...
Tiny Wankel engine packs a power punch above its weight class
Concrete and its most important ingredient, cement, is one of the most carbon-intensive industries on Earth because it's used so often in construction. It has virtually no parallels for the ease of use, versatility, and structural properties, but emits about 0.6 tons of carbon per 1 ton of cement mixture produced according to Imperial College London.
US firm Carbon Upcycling Technologies, in collaboration with the Minnesota Department of Transportation (MnDOT) has successfully completed a three-year study on the use of the company's low-carbon cement in highways.
The results highlight Carbon Upcycling's ability to be a drop-in solution for reducing carbon-intensive cement in concrete, while saving money and making stronger roads.
The work in the study was carried out by Sutter Engineering and sponsored by the National Road Research Alliance (NRRA). It rigorously tested 16 unique concrete mixtures in real-world conditions on an active Minnesota highway to identify options that could reduce the carbon footprint of infrastructure without sacrificing strength or durability.
Completed in early 2024, the study aimed to find materials that could significantly lower the carbon footprint of concrete paving without compromising durability. Carbon Upcycling's CO2-enhanced mix achieved a 12.5% reduction in cement content while matching the workability of traditional concrete, allowing seamless handling, placement, and setting times for construction crews.
"Infrastructure is the very foundation of a sustainable future, and at Carbon Upcycling we're committed to creating materials that support this vision while establishing a secure, stable North American supply chain," said Apoorv Sinha, CEO of Carbon Upcycling.
"Our collaboration with the Minnesota Department of Transportation highlights how Carbon Upcycling can transform captured emissions into local materials that strengthen our infrastructure. By focusing on resilience and sustainability, we're contributing to a vision where our essential structures are clean and built to last."