>
Tucker Exposes Trump Would-Be Assassin Thomas Crooks' Social Media History, The FBI Coverup...
This Was A Major Red Flag In 2008, And Now It Is Happening Again!
Trump orders DOJ probe into Epstein's alleged ties with JPMorgan, Clinton and other Democrats
Blue Origin New Glenn 2 Next Launch and How Many Launches in 2026 and 2027
China's thorium reactor aims to fuse power and parity
Ancient way to create penicillin, a medicine from ancient era
Goodbye, Cavities? Scientists Just Found a Way to Regrow Tooth Enamel
Scientists Say They've Figured Out How to Transcribe Your Thoughts From an MRI Scan
SanDisk stuffed 1 TB of storage into the smallest Type-C thumb drive ever
Calling Dr. Grok. Can AI Do Better than Your Primary Physician?
HUGE 32kWh LiFePO4 DIY Battery w/ 628Ah Cells! 90 Minute Build
What Has Bitcoin Become 17 Years After Satoshi Nakamoto Published The Whitepaper?

The team has identified slow-moving brainwaves it says could be carried only by the brain's gentle electrical field, a mechanism previously thought to be incapable of spreading neural signals altogether.
"Researchers have thought that the brain's endogenous electrical fields are too weak to propagate wave transmission," says Dominique Durand, professor of biomedical engineering at Case Western Reserve University. "But it appears the brain may be using the fields to communicate without synaptic transmissions, gap junctions or diffusion."
What led Durand and her team of researchers to this conclusion was the recording of neural spikes traveling too slowly to be carried by conventional means, indicating something else was at play. They claim that the only possible explanation for the passage of information in this way was the presence of a weak electrical field.
The team tested its theory both by way of computer modeling and observing activity in the hippocampus of a mouse brain, the central region associated with memory and spatial navigation.