>
Why America Can't Fix Itself Or Correct What's Happening
WEF discussing Brain Sensors: 'Humans are Hackable'
This is what keeps me up at night Bongino. – Dan – We want arrests. No more BS….
If you're worried about Social Security and Medicare running out, thank a Democrat – Lara Logan
'Cyborg 1.0': World's First Robocop Debuts With Facial Recognition And 360° Camera Visio
The Immense Complexity of a Brain is Mapped in 3D for the First Time:
SpaceX, Palantir and Anduril Partnership Competing for the US Golden Dome Missile Defense Contracts
US government announces it has achieved ability to 'manipulate space and time' with new tech
Scientists reach pivotal breakthrough in quest for limitless energy:
Kawasaki CORLEO Walks Like a Robot, Rides Like a Bike!
World's Smallest Pacemaker is Made for Newborns, Activated by Light, and Requires No Surgery
Barrel-rotor flying car prototype begins flight testing
Coin-sized nuclear 3V battery with 50-year lifespan enters mass production
BREAKTHROUGH Testing Soon for Starship's Point-to-Point Flights: The Future of Transportation
The team has identified slow-moving brainwaves it says could be carried only by the brain's gentle electrical field, a mechanism previously thought to be incapable of spreading neural signals altogether.
"Researchers have thought that the brain's endogenous electrical fields are too weak to propagate wave transmission," says Dominique Durand, professor of biomedical engineering at Case Western Reserve University. "But it appears the brain may be using the fields to communicate without synaptic transmissions, gap junctions or diffusion."
What led Durand and her team of researchers to this conclusion was the recording of neural spikes traveling too slowly to be carried by conventional means, indicating something else was at play. They claim that the only possible explanation for the passage of information in this way was the presence of a weak electrical field.
The team tested its theory both by way of computer modeling and observing activity in the hippocampus of a mouse brain, the central region associated with memory and spatial navigation.