>
Father jumps overboard to save daughter after she fell from Disney Dream cruise ship
Terrifying new details emerge from Idaho shooting ambush after sniper-wielding gunman...
MSM Claims MAHA "Threatens To Set Women Back Decades"
Peter Thiel Warns: One-World Government A Greater Threat Than AI Or Climate Change
xAI Grok 3.5 Renamed Grok 4 and Has Specialized Coding Model
AI goes full HAL: Blackmail, espionage, and murder to avoid shutdown
BREAKING UPDATE Neuralink and Optimus
1900 Scientists Say 'Climate Change Not Caused By CO2' – The Real Environment Movement...
New molecule could create stamp-sized drives with 100x more storage
DARPA fast tracks flight tests for new military drones
ChatGPT May Be Eroding Critical Thinking Skills, According to a New MIT Study
How China Won the Thorium Nuclear Energy Race
Sunlight-Powered Catalyst Supercharges Green Hydrogen Production by 800%
Five years ago, a non-profit organization called the Brain Preservation Foundation (BPF) challenged the world's neuroscience community to a tough task: to preserve a mouse brain (or a mammalian brain of equal size) for extreme long-term storage. All the neurons and synapses within it would have to remain intact and visible while viewed under a special electron microscope. If achieved, the accomplishment would allow scientists not only to have a better way of studying and possibly treating brain diseases, but it would also pave the way to the idea that we might someday be able to preserve the memory stored in the brain's trillions of microscopic connections.
Kenneth Hayworth/The Brain Preservation Foundation
Robert McIntyre taking a rabbit brain out of a -135 degrees Celsius freezer unit after overnight storage. The brain is completely solid.
Five years ago, a non-profit organization called the Brain Preservation Foundation (BPF) challenged the world's neuroscience community to a tough task: to preserve a mouse brain (or a mammalian brain of equal size) for extreme long-term storage. All the neurons and synapses within it would have to remain intact and visible while viewed under a special electron microscope. If achieved, the accomplishment would allow scientists not only to have a better way of studying and possibly treating brain diseases, but it would also pave the way to the idea that we might someday be able to preserve the memory stored in the brain's trillions of microscopic connections.
Today, BPR has announced that a project done by 21st Century Medicine and led by Robert McIntyre, a recent graduate of MIT, has won the prize and brought the five-year race to a successful end. The team was awarded $26,735 for their work.