>
Tell General Mills To Reject GMO Wheat!
Climate Scientists declare the climate "emergency" is over
Trump's Cabinet is Officially Complete - Meet the Team Ready to Make America Great Again
Former Polish Minister: At Least Half of US Aid Was Laundered by Ukrainians...
Forget Houston. This Space Balloon Will Launch You to the Edge of the Cosmos From a Floating...
SpaceX and NASA show off how Starship will help astronauts land on the moon (images)
How aged cells in one organ can cause a cascade of organ failure
World's most advanced hypergravity facility is now open for business
New Low-Carbon Concrete Outperforms Today's Highway Material While Cutting Costs in Minnesota
Spinning fusion fuel for efficiency and Burn Tritium Ten Times More Efficiently
Rocket plane makes first civil supersonic flight since Concorde
Muscle-powered mechanism desalinates up to 8 liters of seawater per hour
Student-built rocket breaks space altitude record as it hits hypersonic speeds
Researchers discover revolutionary material that could shatter limits of traditional solar panels
Because the demand for donors' organs and tissues is so high, researchers have spent years engineering synthetic tissues that could be transplanted into humans. But that's not very easy to do—many of the gel-like tissues have been too mushy to be moved into a living organism, and without the intricate pathways in the tissue through which oxygen and other nutrients can travel, the living cells inside don't survive long.
Now a team of researchers from Wake Forest University has created a 3D bioprinting tool that creates large synthetic bone, cartilage, and muscle tissue that is viable for weeks or months at a time when implanted in animals. With a bit more work, the researchers believe these 3D printed tissues could be transplanted into humans, according to a study published today in Nature Biotechology.