>
Why America Can't Fix Itself Or Correct What's Happening
WEF discussing Brain Sensors: 'Humans are Hackable'
This is what keeps me up at night Bongino. – Dan – We want arrests. No more BS….
If you're worried about Social Security and Medicare running out, thank a Democrat – Lara Logan
'Cyborg 1.0': World's First Robocop Debuts With Facial Recognition And 360° Camera Visio
The Immense Complexity of a Brain is Mapped in 3D for the First Time:
SpaceX, Palantir and Anduril Partnership Competing for the US Golden Dome Missile Defense Contracts
US government announces it has achieved ability to 'manipulate space and time' with new tech
Scientists reach pivotal breakthrough in quest for limitless energy:
Kawasaki CORLEO Walks Like a Robot, Rides Like a Bike!
World's Smallest Pacemaker is Made for Newborns, Activated by Light, and Requires No Surgery
Barrel-rotor flying car prototype begins flight testing
Coin-sized nuclear 3V battery with 50-year lifespan enters mass production
BREAKTHROUGH Testing Soon for Starship's Point-to-Point Flights: The Future of Transportation
For the first time, scientists have pinpointed the mechanism used by the amphibian to regrow missing body parts, a development they say will offer clues to muscle regeneration in mammals.
A team of scientists from the University of Tsukuba, Japan, and the University of Dayton, Ohio, set out to investigate the role of two types of cells believed to play a key role in a newt's muscle regeneration: skeletal muscle fiber cells (SMFCs) and muscle stem/progenitor cells (MPCs). MPCs are dormant cells that live in the muscle fiber and can be recruited to multiply into specialized muscle cells.
The researchers added a gene to Japanese fire bellied newt embryos that was linked to a red fluorescent protein and known to be active in SMFCs, allowing them to track its activity throughout the muscle regeneration process. MPC activity was assessed through tissue sample collection and cell-specific staining.