>
Tell General Mills To Reject GMO Wheat!
Climate Scientists declare the climate "emergency" is over
Trump's Cabinet is Officially Complete - Meet the Team Ready to Make America Great Again
Former Polish Minister: At Least Half of US Aid Was Laundered by Ukrainians...
Forget Houston. This Space Balloon Will Launch You to the Edge of the Cosmos From a Floating...
SpaceX and NASA show off how Starship will help astronauts land on the moon (images)
How aged cells in one organ can cause a cascade of organ failure
World's most advanced hypergravity facility is now open for business
New Low-Carbon Concrete Outperforms Today's Highway Material While Cutting Costs in Minnesota
Spinning fusion fuel for efficiency and Burn Tritium Ten Times More Efficiently
Rocket plane makes first civil supersonic flight since Concorde
Muscle-powered mechanism desalinates up to 8 liters of seawater per hour
Student-built rocket breaks space altitude record as it hits hypersonic speeds
Researchers discover revolutionary material that could shatter limits of traditional solar panels
MIT researchers have discovered a way to maximize the efficiency of solar panels, effectively producing up to 20 times the solar output of traditional flat panels with the same surface area. Through the construction of vertical towers, scientists were able to create 3 different modules that are far more efficient in tracking solar movement and adjusting to changing seasons.
Unlike traditional flat panels that are designed to harness energy when the sun is at its peak, the different permutations were able to track the sun when it was closer to the horizon; consequently, they collected more sunlight and generated a more consistent output of energy over time. Even variations in weather and altering seasons did not deter these 3D modules, as they were still able to produce double the energy of flat panels despite unfavorable conditions.
The team relied on computer modeling to construct and analyze the performance of a multitude of prototypes. The first modeling demonstrated that complex shapes, like a cube with every face dimpled inward, would offer a 10 to 15 percent increase in power when compared to a simple cube. Researchers encountered the issue, however, of this complex structure being too difficult to 3D print.
Scientists determined that the next best option would be to create a simpler cube model, as well as intricate accordion-like shapes that had the benefit of being able to be shipped flat and unfolded on site. This design was the tallest of the modules and intended to be used in parking lots as charging stations for electric vehicles. These structures not only provide a more consistent flow of electricity, but their design allows for multiple towers to be built together, making them far more space efficient than singular flat panels.
While the modules do cost more than flat panels, scientists predict that the vast increase in energy output greatly outweighs the price tag. As head scientist Jeffrey Grossman discussed, the dramatic fall in cost of solar cells in recent years is ultimately what made this project possible.