>
Trump defends AG Pam Bondi amid Epstein file backlash: 'Let her do her job'
Metal fuses in space - with no heat or pressure
In case you missed it...AIRLINE GIANT EMIRATES TO ACCEPT BITCOIN AND CRYPTO FOR FLIGHTS
Pentagon to become largest shareholder in rare earth miner MP Materials; shares surge 50%
Magic mushrooms may hold the secret to longevity: Psilocybin extends lifespan by 57%...
Unitree G1 vs Boston Dynamics Atlas vs Optimus Gen 2 Robot– Who Wins?
LFP Battery Fire Safety: What You NEED to Know
Final Summer Solar Panel Test: Bifacial Optimization. Save Money w/ These Results!
MEDICAL MIRACLE IN JAPAN: Paralyzed Man Stands Again After Revolutionary Stem Cell Treatment!
Insulator Becomes Conducting Semiconductor And Could Make Superelastic Silicone Solar Panels
Slate Truck's Under $20,000 Price Tag Just Became A Political Casualty
Wisdom Teeth Contain Unique Stem Cell That Can Form Cartilage, Neurons, and Heart Tissue
Hay fever breakthrough: 'Molecular shield' blocks allergy trigger at the site
MIT researchers have discovered a way to maximize the efficiency of solar panels, effectively producing up to 20 times the solar output of traditional flat panels with the same surface area. Through the construction of vertical towers, scientists were able to create 3 different modules that are far more efficient in tracking solar movement and adjusting to changing seasons.
Unlike traditional flat panels that are designed to harness energy when the sun is at its peak, the different permutations were able to track the sun when it was closer to the horizon; consequently, they collected more sunlight and generated a more consistent output of energy over time. Even variations in weather and altering seasons did not deter these 3D modules, as they were still able to produce double the energy of flat panels despite unfavorable conditions.
The team relied on computer modeling to construct and analyze the performance of a multitude of prototypes. The first modeling demonstrated that complex shapes, like a cube with every face dimpled inward, would offer a 10 to 15 percent increase in power when compared to a simple cube. Researchers encountered the issue, however, of this complex structure being too difficult to 3D print.
Scientists determined that the next best option would be to create a simpler cube model, as well as intricate accordion-like shapes that had the benefit of being able to be shipped flat and unfolded on site. This design was the tallest of the modules and intended to be used in parking lots as charging stations for electric vehicles. These structures not only provide a more consistent flow of electricity, but their design allows for multiple towers to be built together, making them far more space efficient than singular flat panels.
While the modules do cost more than flat panels, scientists predict that the vast increase in energy output greatly outweighs the price tag. As head scientist Jeffrey Grossman discussed, the dramatic fall in cost of solar cells in recent years is ultimately what made this project possible.