>
The Mystery of Trump, Ukraine, and Russia
Resolute Space 2025: How the U.S. Space Force is Arming for Invisible Wars in the Stars
This "Printed" House Is Stronger Than You Think
Top Developers Increasingly Warn That AI Coding Produces Flaws And Risks
We finally integrated the tiny brains with computers and AI
Stylish Prefab Home Can Be 'Dropped' into Flooded Areas or Anywhere Housing is Needed
Energy Secretary Expects Fusion to Power the World in 8-15 Years
ORNL tackles control challenges of nuclear rocket engines
Tesla Megapack Keynote LIVE - TESLA is Making Transformers !!
Methylene chloride (CH2Cl?) and acetone (C?H?O) create a powerful paint remover...
Engineer Builds His Own X-Ray After Hospital Charges Him $69K
Researchers create 2D nanomaterials with up to nine metals for extreme conditions
Now researchers have developed a way of manufacturing lenses operating at this frequency that are simple and inexpensive, but are claimed to produce near-flawless images which could vastly improve biomedical imaging as well as biological and explosive security scanning.
Terahertz frequencies are located between the microwave and infrared frequencies in the in the electromagnetic spectrum, at a wavelength range between 1 mm to 0.1 mm, and have some particularly remarkable properties. Many ordinary materials and living tissue, for example, are semi-transparent to this radiation and produce their own unique "fingerprints," that allows them to be individually identified as well as imaged and analyzed.
"Terahertz is somewhat of a gap between microwaves and infrared," says Northwestern University's Associate Professor of Mechanical Engineering, Cheng Sun. "People are trying to fill in this gap because this spectrum carries a lot of information."