>
Tell General Mills To Reject GMO Wheat!
Climate Scientists declare the climate "emergency" is over
Trump's Cabinet is Officially Complete - Meet the Team Ready to Make America Great Again
Former Polish Minister: At Least Half of US Aid Was Laundered by Ukrainians...
Forget Houston. This Space Balloon Will Launch You to the Edge of the Cosmos From a Floating...
SpaceX and NASA show off how Starship will help astronauts land on the moon (images)
How aged cells in one organ can cause a cascade of organ failure
World's most advanced hypergravity facility is now open for business
New Low-Carbon Concrete Outperforms Today's Highway Material While Cutting Costs in Minnesota
Spinning fusion fuel for efficiency and Burn Tritium Ten Times More Efficiently
Rocket plane makes first civil supersonic flight since Concorde
Muscle-powered mechanism desalinates up to 8 liters of seawater per hour
Student-built rocket breaks space altitude record as it hits hypersonic speeds
Researchers discover revolutionary material that could shatter limits of traditional solar panels
Finding a cure for viruses like Ebola, Zika, or even the flu is a challenging task. Viruses are vastly different from one another, and even the same strain of a virus can mutate and change--that's why doctors give out a different flu vaccine each year. But a group of researchers at IBM and the Institute of Bioengineering and Nanotechnology in Singapore sought to understand what makes all viruses alike. Using that knowledge, they've come up with a macromolecule that may have the potential to treat multiple types of viruses and prevent them from infecting us. The work was published recently in the journal Macromolecules.
For their study, the researchers ignored the viruses' RNA and DNA, which could be key areas to target, but because they change from virus to virus and also mutate, it's very difficult to target them successfully.