>
Christmas Truce of 1914, World War I - For Sharing, For Peace
The Roots of Collectivist Thinking
What Would Happen if a Major Bank Collapsed Tomorrow?
Travel gadget promises to dry and iron your clothes – totally hands-free
Perfect Aircrete, Kitchen Ingredients.
Futuristic pixel-raising display lets you feel what's onscreen
Cutting-Edge Facility Generates Pure Water and Hydrogen Fuel from Seawater for Mere Pennies
This tiny dev board is packed with features for ambitious makers
Scientists Discover Gel to Regrow Tooth Enamel
Vitamin C and Dandelion Root Killing Cancer Cells -- as Former CDC Director Calls for COVID-19...
Galactic Brain: US firm plans space-based data centers, power grid to challenge China
A microbial cleanup for glyphosate just earned a patent. Here's why that matters
Japan Breaks Internet Speed Record with 5 Million Times Faster Data Transfer

Finding a cure for viruses like Ebola, Zika, or even the flu is a challenging task. Viruses are vastly different from one another, and even the same strain of a virus can mutate and change--that's why doctors give out a different flu vaccine each year. But a group of researchers at IBM and the Institute of Bioengineering and Nanotechnology in Singapore sought to understand what makes all viruses alike. Using that knowledge, they've come up with a macromolecule that may have the potential to treat multiple types of viruses and prevent them from infecting us. The work was published recently in the journal Macromolecules.
For their study, the researchers ignored the viruses' RNA and DNA, which could be key areas to target, but because they change from virus to virus and also mutate, it's very difficult to target them successfully.