>
Masked Muslim youths take to east London streets to 'defend our community' after police bann
Why Owning Gold and Silver Is More Critical Than Ever
Redfin, Realtor, Reality: Signs of a Housing Shift
China's $2.6b Belt and Road Battery project in Australia paid for by our taxpayers
Why 'Mirror Life' Is Causing Some Genetic Scientists To Freak Out
Retina e-paper promises screens 'visually indistinguishable from reality'
Scientists baffled as interstellar visitor appears to reverse thrust before vanishing behind the sun
Future of Satellite of Direct to Cellphone
Amazon goes nuclear with new modular reactor plant
China Is Making 800-Mile EV Batteries. Here's Why America Can't Have Them
China Innovates: Transforming Sand into Paper
Millions Of America's Teens Are Being Seduced By AI Chatbots
Transhumanist Scientists Create Embryos From Skin Cells And Sperm

Able to be molded in almost any shape, and even extruded into optical fibers, the researchers claim that this new "hybrid glass" could be used to create new smart glass devices, including smart 3D displays and remote radiation sensors.
Australian researchers at the University of Adelaide, in collaboration with Macquarie University and the University of Melbourne, created this glowing glass by molding upconversion luminescent nanoparticles directly into the translucent material using a two-temperature glass-melting technique. The embedded nanoparticles produce luminescence when two or more low-energy, longer wavelength (usually infrared) photons are absorbed by the particles which then emit a single higher-energy, shorter wavelength photon in return.
"These novel luminescent nanoparticles, called upconversion nanoparticles, have become promising candidates for a whole variety of ultra-high tech applications such as biological sensing, biomedical imaging and 3D volumetric displays," says Dr Tim Zhao, from the University of Adelaide's School of Physical Sciences and Institute for Photonics and Advanced Sensing (IPAS). "Integrating these nanoparticles into glass, which is usually inert, opens up exciting possibilities for new hybrid materials and devices that can take advantage of the properties of nanoparticles in ways we haven't been able to do before."