>
SpaceX Starship HeatShield Solution
One Million Signatures For French Immigration Referendum
Man Faces Potential Attempted Murder Charge In France After Stabbing Home Intruder
Report: Older Man Initially Arrested After Kirk Shooting Confessed to Distracting Police...
We finally integrated the tiny brains with computers and AI
Stylish Prefab Home Can Be 'Dropped' into Flooded Areas or Anywhere Housing is Needed
Energy Secretary Expects Fusion to Power the World in 8-15 Years
ORNL tackles control challenges of nuclear rocket engines
Tesla Megapack Keynote LIVE - TESLA is Making Transformers !!
Methylene chloride (CH2Cl?) and acetone (C?H?O) create a powerful paint remover...
Engineer Builds His Own X-Ray After Hospital Charges Him $69K
Researchers create 2D nanomaterials with up to nine metals for extreme conditions
Laser connects plane and satellite in breakthrough air-to-space link
Lucid Motors' World-Leading Electric Powertrain Breakdown with Emad Dlala and Eric Bach
Able to be molded in almost any shape, and even extruded into optical fibers, the researchers claim that this new "hybrid glass" could be used to create new smart glass devices, including smart 3D displays and remote radiation sensors.
Australian researchers at the University of Adelaide, in collaboration with Macquarie University and the University of Melbourne, created this glowing glass by molding upconversion luminescent nanoparticles directly into the translucent material using a two-temperature glass-melting technique. The embedded nanoparticles produce luminescence when two or more low-energy, longer wavelength (usually infrared) photons are absorbed by the particles which then emit a single higher-energy, shorter wavelength photon in return.
"These novel luminescent nanoparticles, called upconversion nanoparticles, have become promising candidates for a whole variety of ultra-high tech applications such as biological sensing, biomedical imaging and 3D volumetric displays," says Dr Tim Zhao, from the University of Adelaide's School of Physical Sciences and Institute for Photonics and Advanced Sensing (IPAS). "Integrating these nanoparticles into glass, which is usually inert, opens up exciting possibilities for new hybrid materials and devices that can take advantage of the properties of nanoparticles in ways we haven't been able to do before."