>
If you're worried about Social Security and Medicare running out, thank a Democrat – Lara Logan
There is a highly orchestrated, dark campaign afoot to take down Pete Hegseth…
Cramming More Components Onto Integrated Circuits
"I Want A Death That The World Will Hear"?--?Journalist Assassinated By Israel For Telling
'Cyborg 1.0': World's First Robocop Debuts With Facial Recognition And 360° Camera Visio
The Immense Complexity of a Brain is Mapped in 3D for the First Time:
SpaceX, Palantir and Anduril Partnership Competing for the US Golden Dome Missile Defense Contracts
US government announces it has achieved ability to 'manipulate space and time' with new tech
Scientists reach pivotal breakthrough in quest for limitless energy:
Kawasaki CORLEO Walks Like a Robot, Rides Like a Bike!
World's Smallest Pacemaker is Made for Newborns, Activated by Light, and Requires No Surgery
Barrel-rotor flying car prototype begins flight testing
Coin-sized nuclear 3V battery with 50-year lifespan enters mass production
BREAKTHROUGH Testing Soon for Starship's Point-to-Point Flights: The Future of Transportation
Getting inside the human body to have a look around is always going to be invasive, but that doesn't mean more can't be done to make things a little more comfortable. With this goal in mind, German researchers have developed a complex lens system no bigger than a grain of salt that fits inside a syringe. The imaging tool could make for not just more productive medical imaging, but tiny cameras for everything from drones to slimmer smartphones.
Scientists from the University of Stuttgart built their three-lens camera using a new 3D printing technique. They say their new approach offers sub-micrometer accuracy that makes it possible to 3D print optical lens systems with two or more lenses for the first time. Their resulting multi-lens system opens up the possibility of correcting for aberration (where a lens cannot bring all wavelengths of color to the same focal plane), which could enable higher image quality from smaller devices.
Here's how they did it. Using a femtosecond laser, where the pulse durations were shorter than 100 femtoseconds (a femtosecond is one quadrillionth of a second), they blasted a light-sensitive material resting on a glass substrate. Two photons are absorbed by the material, which exposes it and crosslinks polymers within. Unexposed material is then washed away with a solvent, leaving behind the hardened, crosslinked polymer used to form the optical element.
The team used this approach to print imaging components for optical microscopes with a diameter and height of 125 micrometers, and then attached them to the end of a 5.6-ft (1.7-m) optical fiber the width of two human hairs. The camera on the end of this small endoscope is capable of focusing on images from a distance of 3 mm (0.12 in). The team says the entire imaging system fits comfortably inside a standard syringe needle, which raises the possibility of delivering it to directly to organs, and even the brain.