>
Epstein Client List BOMBSHELL, Musk's 'America Party' & Tucker's Iran Interview | PB
The Hidden Cost of Union Power: Rich Contracts and Layoffs Down the Road
Do They Deserve It? Mexico Is Collapsing As The US Deports Illegals Back Home
Copper Soars To Record High As Trump Unleashes 50% Tariff
Insulator Becomes Conducting Semiconductor And Could Make Superelastic Silicone Solar Panels
Slate Truck's Under $20,000 Price Tag Just Became A Political Casualty
Wisdom Teeth Contain Unique Stem Cell That Can Form Cartilage, Neurons, and Heart Tissue
Hay fever breakthrough: 'Molecular shield' blocks allergy trigger at the site
AI Getting Better at Medical Diagnosis
Tesla Starting Integration of XAI Grok With Cars in Week or So
Bifacial Solar Panels: Everything You NEED to Know Before You Buy
INVASION of the TOXIC FOOD DYES:
Let's Test a Mr Robot Attack on the New Thunderbird for Mobile
Facial Recognition - Another Expanding Wolf in Sheep's Clothing Technology
Eyes are complex machines, and visual processing of the images they take in accounts for more than a third of brain functioning. It starts with photoreceptor cells at the back of the retina that react to light wavelengths and send their electrically-coded data to the 30 or so types of retinal ganglion cells, each one specializing in processing specific aspects of vision; they're also the only nerve cells connecting the eye with the brain.
Projected from the ganglion cells are long, slender projections called axons, which are bundled together along the optic nerve from the eye before fanning out to various regions in the brain where the visual input is interpreted. Unfortunately, axons in the brain or spinal cord don't regenerate on their own once they've been damaged, leading to permanent vision loss. One reason for this is the reduction over time of a cascade of growth-enhancing molecular interactions within axon cells known as the mTOR pathway.
The condition of the mice's eyes in the study was similar to glaucoma, which is associated with pressure on the optic nerve to the point where damage occurs. Affecting nearly 70 million people globally, glaucoma and is the second-leading cause of blindness after cataracts, and currently there's no cure. Injuries, retinal detachment, and some tumors and brain cancers can also damage the optic nerve.