>
WEF discussing Brain Sensors: 'Humans are Hackable'
This is what keeps me up at night Bongino. – Dan – We want arrests. No more BS….
If you're worried about Social Security and Medicare running out, thank a Democrat – Lara Logan
There is a highly orchestrated, dark campaign afoot to take down Pete Hegseth…
'Cyborg 1.0': World's First Robocop Debuts With Facial Recognition And 360° Camera Visio
The Immense Complexity of a Brain is Mapped in 3D for the First Time:
SpaceX, Palantir and Anduril Partnership Competing for the US Golden Dome Missile Defense Contracts
US government announces it has achieved ability to 'manipulate space and time' with new tech
Scientists reach pivotal breakthrough in quest for limitless energy:
Kawasaki CORLEO Walks Like a Robot, Rides Like a Bike!
World's Smallest Pacemaker is Made for Newborns, Activated by Light, and Requires No Surgery
Barrel-rotor flying car prototype begins flight testing
Coin-sized nuclear 3V battery with 50-year lifespan enters mass production
BREAKTHROUGH Testing Soon for Starship's Point-to-Point Flights: The Future of Transportation
Eyes are complex machines, and visual processing of the images they take in accounts for more than a third of brain functioning. It starts with photoreceptor cells at the back of the retina that react to light wavelengths and send their electrically-coded data to the 30 or so types of retinal ganglion cells, each one specializing in processing specific aspects of vision; they're also the only nerve cells connecting the eye with the brain.
Projected from the ganglion cells are long, slender projections called axons, which are bundled together along the optic nerve from the eye before fanning out to various regions in the brain where the visual input is interpreted. Unfortunately, axons in the brain or spinal cord don't regenerate on their own once they've been damaged, leading to permanent vision loss. One reason for this is the reduction over time of a cascade of growth-enhancing molecular interactions within axon cells known as the mTOR pathway.
The condition of the mice's eyes in the study was similar to glaucoma, which is associated with pressure on the optic nerve to the point where damage occurs. Affecting nearly 70 million people globally, glaucoma and is the second-leading cause of blindness after cataracts, and currently there's no cure. Injuries, retinal detachment, and some tumors and brain cancers can also damage the optic nerve.