>
Former White House Advisor: "Trump to Release $150 Trillion Endowment"
The Mayo Clinic just tried to pull a fast one on the Trump administration...
'Cyborg 1.0': World's First Robocop Debuts With Facial Recognition And 360° Camera Visio
Dr. Aseem Malhotra Joins Alex Jones Live In-Studio! Top Medical Advisor To HHS Sec. RFK Jr. Gives...
Scientists reach pivotal breakthrough in quest for limitless energy:
Kawasaki CORLEO Walks Like a Robot, Rides Like a Bike!
World's Smallest Pacemaker is Made for Newborns, Activated by Light, and Requires No Surgery
Barrel-rotor flying car prototype begins flight testing
Coin-sized nuclear 3V battery with 50-year lifespan enters mass production
BREAKTHROUGH Testing Soon for Starship's Point-to-Point Flights: The Future of Transportation
Molten salt test loop to advance next-gen nuclear reactors
Quantum Teleportation Achieved Over Internet For The First Time
Watch the Jetson Personal Air Vehicle take flight, then order your own
Microneedles extract harmful cells, deliver drugs into chronic wounds
Now, Korean scientists have developed a material that mimics the sucker discs on those tentacles. It could be used for adhesive pads that are reversible, reusable, fast-acting, and effective even in wet conditions.
A real octopus sucker disc has a hollow cavity in the middle, surrounded by a ring of muscle tissue. The size of the cavity is controlled by the octopus making that tissue thicker or thinner – the thinner the muscle tissue, the larger the cavity, and the lower the air pressure within it. A larger cavity creates more suction, while a smaller one causes the disc to release.
The scientists, from the Korea Institute of Science and Technology (KIST) and Ulsan National Institute of Science and Technology (UNIST), made their pad using rubbery polydimethylsiloxane (PDMS) studded with an array of tiny pores. Each of those pores is lined with a thermally-responsive polymer.