>
Tell General Mills To Reject GMO Wheat!
Climate Scientists declare the climate "emergency" is over
Trump's Cabinet is Officially Complete - Meet the Team Ready to Make America Great Again
Former Polish Minister: At Least Half of US Aid Was Laundered by Ukrainians...
Forget Houston. This Space Balloon Will Launch You to the Edge of the Cosmos From a Floating...
SpaceX and NASA show off how Starship will help astronauts land on the moon (images)
How aged cells in one organ can cause a cascade of organ failure
World's most advanced hypergravity facility is now open for business
New Low-Carbon Concrete Outperforms Today's Highway Material While Cutting Costs in Minnesota
Spinning fusion fuel for efficiency and Burn Tritium Ten Times More Efficiently
Rocket plane makes first civil supersonic flight since Concorde
Muscle-powered mechanism desalinates up to 8 liters of seawater per hour
Student-built rocket breaks space altitude record as it hits hypersonic speeds
Researchers discover revolutionary material that could shatter limits of traditional solar panels
The fountain of youth may reside in an embryonic stem cell gene named Nanog.
In a series of experiments at the University at Buffalo, the gene kicked into action dormant cellular processes that are key to preventing weak bones, clogged arteries and other telltale signs of growing old.
The findings, published June 29 in the journal Stem Cells, also show promise in counteracting premature aging disorders such as Hutchinson-Gilford progeria syndrome.
"Our research into Nanog is helping us to better understand the process of aging and ultimately how to reverse it," says Stelios T. Andreadis, PhD, professor and chair of the Department of Chemical and Biological Engineering at the UB School of Engineering and Applied Sciences, and the study's lead author.
Additional authors come from UB's Department of Biomedical Engineering, a joint program between UB's engineering school and the Jacobs School of Medicine and Biomedical Sciences at UB, and the Department of Biostatistics and Bioinformatics at Roswell Park Cancer Institute in Buffalo.