>
Japan Posts Record Population Drop, Shrinking For 14th Year, As Demographic Crisis Deepens
Defund The Cartels: A Smarter Plan For The Border
Dollar Crashes On Powell Removal Speculation, Gold Soars To All Time High And Bitcoin...
How Might Washington's Relations With Ukraine & Russia Change If It Abandons Its Peace Efforts?
'Cyborg 1.0': World's First Robocop Debuts With Facial Recognition And 360° Camera Visio
The Immense Complexity of a Brain is Mapped in 3D for the First Time:
SpaceX, Palantir and Anduril Partnership Competing for the US Golden Dome Missile Defense Contracts
US government announces it has achieved ability to 'manipulate space and time' with new tech
Scientists reach pivotal breakthrough in quest for limitless energy:
Kawasaki CORLEO Walks Like a Robot, Rides Like a Bike!
World's Smallest Pacemaker is Made for Newborns, Activated by Light, and Requires No Surgery
Barrel-rotor flying car prototype begins flight testing
Coin-sized nuclear 3V battery with 50-year lifespan enters mass production
BREAKTHROUGH Testing Soon for Starship's Point-to-Point Flights: The Future of Transportation
The patients used brain-machine interfaces, including a virtual reality system that used their own brain activity to simulate full control of their legs. Videos accompanying the study illustrate their progress.
The research -- led by Duke University neuroscientist Miguel Nicolelis, M.D., Ph.D., as part of the Walk Again Project in São Paulo, Brazil -- offers promise for people with spinal cord injury, stroke and other conditions to regain strength, mobility and independence.
"We couldn't have predicted this surprising clinical outcome when we began the project," said Nicolelis, co-director of the Duke Center for Neuroengineering who is originally from Brazil.