>
How a 27-Year-Old Codebreaker Busted the Myth of Bitcoin's Anonymity
Old World Order is COLLAPSING: The Death of Europe and the Rise of China
Energy Secretary Expects Fusion to Power the World in 8-15 Years
South Koreans Feel Betrayed Over Immigration Raid, Now Comes the Blowback
Tesla Megapack Keynote LIVE - TESLA is Making Transformers !!
Methylene chloride (CH2Cl?) and acetone (C?H?O) create a powerful paint remover...
Engineer Builds His Own X-Ray After Hospital Charges Him $69K
Researchers create 2D nanomaterials with up to nine metals for extreme conditions
The Evolution of Electric Motors: From Bulky to Lightweight, Efficient Powerhouses
3D-Printing 'Glue Gun' Can Repair Bone Fractures During Surgery Filling-in the Gaps Around..
Kevlar-like EV battery material dissolves after use to recycle itself
Laser connects plane and satellite in breakthrough air-to-space link
Lucid Motors' World-Leading Electric Powertrain Breakdown with Emad Dlala and Eric Bach
Murder, UFOs & Antigravity Tech -- What's Really Happening at Huntsville, Alabama's Space Po
In their recent study, the team tested the system using a stack of papers with one letter printed on each and found that it could correctly identify those written on the top nine sheets.
The new system takes advantage of terahertz radiation – the band of electromagnetic radiation that lies between microwaves and infrared light on the electromagnetic spectrum. Although other wave types – such as X-rays – can also penetrate surfaces, the team chose to use terahertz radiation because it can differentiate between ink and blank paper in a way that X-rays cannot. This stems from the fact that different chemicals absorb different terahertz frequencies to varying degrees, giving each chemical – such as those used in ink and paper – a unique frequency signature.
MIT algorithms designed to capture images from each paper use this absorption difference to make the characters as clear as possible. Afterwards, algorithms developed by Georgia Tech were able to interpret the often-distorted images as letters.