>
Big Tech's AI engines are becoming STUPID as they push narrative control
Robert F. Kennedy Jr. Announces Raids on Chinese Vape Products to Protect Children's Health
Close Friend Honors Iryna Zarutska with Heartfelt Tribute Video
AG Pam Bondi Clarifies Her Stance on First Amendment Following Backlash...
This "Printed" House Is Stronger Than You Think
Top Developers Increasingly Warn That AI Coding Produces Flaws And Risks
We finally integrated the tiny brains with computers and AI
Stylish Prefab Home Can Be 'Dropped' into Flooded Areas or Anywhere Housing is Needed
Energy Secretary Expects Fusion to Power the World in 8-15 Years
ORNL tackles control challenges of nuclear rocket engines
Tesla Megapack Keynote LIVE - TESLA is Making Transformers !!
Methylene chloride (CH2Cl?) and acetone (C?H?O) create a powerful paint remover...
Engineer Builds His Own X-Ray After Hospital Charges Him $69K
Researchers create 2D nanomaterials with up to nine metals for extreme conditions
The team is studying the combustion characteristics of metal powders to determine whether such powders could provide a cleaner, more viable alternative to fossil fuels than hydrogen, biofuels, or electric batteries.
Metals may seem about as unburnable as it's possible to be, but when ground into extremely fine powder like flour or icing sugar, it's a different story. The simile is an apt one because the metal powders are similar to flour or sugar in more than particle size. Almost anything ground so fine will burn or even explode under the right conditions.
Grinding a powder so fine vastly increases the ratio between the surface area and the volume of the grains, so they burn very readily. In fact, they burn so readily that it's the reason why flour mills are so well ventilated. The slightest spark in floury air and a mill can blow up like a munitions dump. The same goes for sugar, metals, or even some types of rock.
This fact is already employed in a number of areas. Iron or aluminum, for example, can be ground up and turned into colorants for fireworks, solid rocket fuel powerful enough to lift a payload into orbit, or thermite that can burn hot enough to cut steel rails. What the McGill team hopes to do is harness this principle and turn it into a practical power source for everyday use.