>
Tell General Mills To Reject GMO Wheat!
Climate Scientists declare the climate "emergency" is over
Trump's Cabinet is Officially Complete - Meet the Team Ready to Make America Great Again
Former Polish Minister: At Least Half of US Aid Was Laundered by Ukrainians...
Forget Houston. This Space Balloon Will Launch You to the Edge of the Cosmos From a Floating...
SpaceX and NASA show off how Starship will help astronauts land on the moon (images)
How aged cells in one organ can cause a cascade of organ failure
World's most advanced hypergravity facility is now open for business
New Low-Carbon Concrete Outperforms Today's Highway Material While Cutting Costs in Minnesota
Spinning fusion fuel for efficiency and Burn Tritium Ten Times More Efficiently
Rocket plane makes first civil supersonic flight since Concorde
Muscle-powered mechanism desalinates up to 8 liters of seawater per hour
Student-built rocket breaks space altitude record as it hits hypersonic speeds
Researchers discover revolutionary material that could shatter limits of traditional solar panels
The team is studying the combustion characteristics of metal powders to determine whether such powders could provide a cleaner, more viable alternative to fossil fuels than hydrogen, biofuels, or electric batteries.
Metals may seem about as unburnable as it's possible to be, but when ground into extremely fine powder like flour or icing sugar, it's a different story. The simile is an apt one because the metal powders are similar to flour or sugar in more than particle size. Almost anything ground so fine will burn or even explode under the right conditions.
Grinding a powder so fine vastly increases the ratio between the surface area and the volume of the grains, so they burn very readily. In fact, they burn so readily that it's the reason why flour mills are so well ventilated. The slightest spark in floury air and a mill can blow up like a munitions dump. The same goes for sugar, metals, or even some types of rock.
This fact is already employed in a number of areas. Iron or aluminum, for example, can be ground up and turned into colorants for fireworks, solid rocket fuel powerful enough to lift a payload into orbit, or thermite that can burn hot enough to cut steel rails. What the McGill team hopes to do is harness this principle and turn it into a practical power source for everyday use.