>
Government shutdown triggers travel nightmare as controller shortages force ground stops...
How a natural PEPTIDE helped me REGENERATE injured tissue
Asteroid Threat Detection and Planetary Defense Can Be Complete and Ready by 2035
Graphene Dream Becomes a Reality as Miracle Material Enters Production for Better Chips, Batteries
Virtual Fencing May Allow Thousands More Cattle to Be Ranched on Land Rather Than in Barns
Prominent Personalities Sign Letter Seeking Ban On 'Development Of Superintelligence'
Why 'Mirror Life' Is Causing Some Genetic Scientists To Freak Out
Retina e-paper promises screens 'visually indistinguishable from reality'
Scientists baffled as interstellar visitor appears to reverse thrust before vanishing behind the sun
Future of Satellite of Direct to Cellphone
Amazon goes nuclear with new modular reactor plant
China Is Making 800-Mile EV Batteries. Here's Why America Can't Have Them

The team is studying the combustion characteristics of metal powders to determine whether such powders could provide a cleaner, more viable alternative to fossil fuels than hydrogen, biofuels, or electric batteries.
Metals may seem about as unburnable as it's possible to be, but when ground into extremely fine powder like flour or icing sugar, it's a different story. The simile is an apt one because the metal powders are similar to flour or sugar in more than particle size. Almost anything ground so fine will burn or even explode under the right conditions.
Grinding a powder so fine vastly increases the ratio between the surface area and the volume of the grains, so they burn very readily. In fact, they burn so readily that it's the reason why flour mills are so well ventilated. The slightest spark in floury air and a mill can blow up like a munitions dump. The same goes for sugar, metals, or even some types of rock.
This fact is already employed in a number of areas. Iron or aluminum, for example, can be ground up and turned into colorants for fireworks, solid rocket fuel powerful enough to lift a payload into orbit, or thermite that can burn hot enough to cut steel rails. What the McGill team hopes to do is harness this principle and turn it into a practical power source for everyday use.