>
The Menace of "Public" Education
THE TRUTH IS FINALLY COMING OUT!
Israel Willing to Ignore Trump and Proceed With 'Limited Attack' on Iranian Nuclear Faciliti
'Cyborg 1.0': World's First Robocop Debuts With Facial Recognition And 360° Camera Visio
The Immense Complexity of a Brain is Mapped in 3D for the First Time:
SpaceX, Palantir and Anduril Partnership Competing for the US Golden Dome Missile Defense Contracts
US government announces it has achieved ability to 'manipulate space and time' with new tech
Scientists reach pivotal breakthrough in quest for limitless energy:
Kawasaki CORLEO Walks Like a Robot, Rides Like a Bike!
World's Smallest Pacemaker is Made for Newborns, Activated by Light, and Requires No Surgery
Barrel-rotor flying car prototype begins flight testing
Coin-sized nuclear 3V battery with 50-year lifespan enters mass production
BREAKTHROUGH Testing Soon for Starship's Point-to-Point Flights: The Future of Transportation
Now, researchers at the University of Cambridge have turned to biology – to cells that line the human intestine – for inspiration in designing next-generation batteries. It's a big step forward for lithium-sulphur batteries, but it'll likely still be years before the tech becomes commercially available.
Lithium-sulphur battery technology has a lot of potential – it could provide as much as five times the energy density of lithium-ion solutions used today. But batteries made using the materials tend to be short-lived, with active material being lost during the repeated charge-discharge cycle. A Cambridge team believes it's now solved the issue, by adding a thin layer of material to the setup.
But taking a step back – what makes lithium-sulphur battery tech so appealing in the first place?