>
Tell General Mills To Reject GMO Wheat!
Climate Scientists declare the climate "emergency" is over
Trump's Cabinet is Officially Complete - Meet the Team Ready to Make America Great Again
Former Polish Minister: At Least Half of US Aid Was Laundered by Ukrainians...
Forget Houston. This Space Balloon Will Launch You to the Edge of the Cosmos From a Floating...
SpaceX and NASA show off how Starship will help astronauts land on the moon (images)
How aged cells in one organ can cause a cascade of organ failure
World's most advanced hypergravity facility is now open for business
New Low-Carbon Concrete Outperforms Today's Highway Material While Cutting Costs in Minnesota
Spinning fusion fuel for efficiency and Burn Tritium Ten Times More Efficiently
Rocket plane makes first civil supersonic flight since Concorde
Muscle-powered mechanism desalinates up to 8 liters of seawater per hour
Student-built rocket breaks space altitude record as it hits hypersonic speeds
Researchers discover revolutionary material that could shatter limits of traditional solar panels
Now, researchers at the University of Cambridge have turned to biology – to cells that line the human intestine – for inspiration in designing next-generation batteries. It's a big step forward for lithium-sulphur batteries, but it'll likely still be years before the tech becomes commercially available.
Lithium-sulphur battery technology has a lot of potential – it could provide as much as five times the energy density of lithium-ion solutions used today. But batteries made using the materials tend to be short-lived, with active material being lost during the repeated charge-discharge cycle. A Cambridge team believes it's now solved the issue, by adding a thin layer of material to the setup.
But taking a step back – what makes lithium-sulphur battery tech so appealing in the first place?