>
Israel Is Committing Genocide: A New UN Ruling Solidifies The Obvious
Perceived Importance of College Hits Record Low 35 Percent
The CDC Needed a Thorough Housecleaning
Charlie Kirk's Death Exposed the Biggest Scam in History
This "Printed" House Is Stronger Than You Think
Top Developers Increasingly Warn That AI Coding Produces Flaws And Risks
We finally integrated the tiny brains with computers and AI
Stylish Prefab Home Can Be 'Dropped' into Flooded Areas or Anywhere Housing is Needed
Energy Secretary Expects Fusion to Power the World in 8-15 Years
ORNL tackles control challenges of nuclear rocket engines
Tesla Megapack Keynote LIVE - TESLA is Making Transformers !!
Methylene chloride (CH2Cl?) and acetone (C?H?O) create a powerful paint remover...
Engineer Builds His Own X-Ray After Hospital Charges Him $69K
Researchers create 2D nanomaterials with up to nine metals for extreme conditions
Now, researchers at the University of Cambridge have turned to biology – to cells that line the human intestine – for inspiration in designing next-generation batteries. It's a big step forward for lithium-sulphur batteries, but it'll likely still be years before the tech becomes commercially available.
Lithium-sulphur battery technology has a lot of potential – it could provide as much as five times the energy density of lithium-ion solutions used today. But batteries made using the materials tend to be short-lived, with active material being lost during the repeated charge-discharge cycle. A Cambridge team believes it's now solved the issue, by adding a thin layer of material to the setup.
But taking a step back – what makes lithium-sulphur battery tech so appealing in the first place?