>
IT'S OVER: Banks Tap Fed for $17 BILLION as Silver Shorts Implode
SEMI-NEWS/SEMI-SATIRE: December 28, 2025 Edition
China Will Close the Semiconductor Gap After EUV Lithography Breakthrough
The Five Big Lies of Vaccinology
EngineAI T800: Born to Disrupt! #EngineAI #robotics #newtechnology #newproduct
This Silicon Anode Breakthrough Could Mark A Turning Point For EV Batteries [Update]
Travel gadget promises to dry and iron your clothes – totally hands-free
Perfect Aircrete, Kitchen Ingredients.
Futuristic pixel-raising display lets you feel what's onscreen
Cutting-Edge Facility Generates Pure Water and Hydrogen Fuel from Seawater for Mere Pennies
This tiny dev board is packed with features for ambitious makers
Scientists Discover Gel to Regrow Tooth Enamel
Vitamin C and Dandelion Root Killing Cancer Cells -- as Former CDC Director Calls for COVID-19...
Galactic Brain: US firm plans space-based data centers, power grid to challenge China

There is also strong material (EFTE) which is 100 times lighter than glass and which can lower costs by 4 times. Very large geodesic domes could cover several square miles on Mars. Mars has one third of the gravity on Earth, so dome cities could be very large there.
A large "shell" can be used to encase an alien world (asteroid or moon), keeping its atmosphere contained long enough for long-term changes to take root.
There is also the concepts where a usable part of a planet is enclosed in an dome in order to transform its environment, which is known as "paraterraforming".
Paraterraforming - The worldhouse concept
The 'worldhouse' concept of paraterraforming can be formulated within the existing boundaries of technological knowledge and can provide a quasi-unconstrained global habitable environment at significantly lower levels of materials requirement and economic cost. Construction can proceed on a modular basis. A coarse-grained assessment of the possibilities of paraterraforming Mars is presented. It is suggested that the establishment of a fully habitable worldhouse environment on the planet Mercury would be a much less difficult undertaking than taerraforming Venus and could be economically important for the human exploitation of the solar system.