>
Former White House Advisor: "Trump to Release $150 Trillion Endowment"
The Mayo Clinic just tried to pull a fast one on the Trump administration...
'Cyborg 1.0': World's First Robocop Debuts With Facial Recognition And 360° Camera Visio
Dr. Aseem Malhotra Joins Alex Jones Live In-Studio! Top Medical Advisor To HHS Sec. RFK Jr. Gives...
Scientists reach pivotal breakthrough in quest for limitless energy:
Kawasaki CORLEO Walks Like a Robot, Rides Like a Bike!
World's Smallest Pacemaker is Made for Newborns, Activated by Light, and Requires No Surgery
Barrel-rotor flying car prototype begins flight testing
Coin-sized nuclear 3V battery with 50-year lifespan enters mass production
BREAKTHROUGH Testing Soon for Starship's Point-to-Point Flights: The Future of Transportation
Molten salt test loop to advance next-gen nuclear reactors
Quantum Teleportation Achieved Over Internet For The First Time
Watch the Jetson Personal Air Vehicle take flight, then order your own
Microneedles extract harmful cells, deliver drugs into chronic wounds
Solar cells are the building blocks of photovoltaic solar panels. They are made from light-absorbing materials that convert sunlight into electricity. Normally the light-absorbing material is silicon, which has an energy-intensive manufacturing process.
In the new study, scientists looked at solar cells made from materials known as perovskites. These can be produced cheaply from chemicals mixed into printable or sprayable ink, which then crystallises to form light-absorbing films.
However, perovskite films contain charged defects that are likely to impair their performance. Slow movement of these defects is thought to be responsible for a process known as hysteresis, which leads to irregularities in the efficiency with which light is converted to electrical current.
Light-generated electricity exits the solar cell in the form of electrons to be harnessed. This is done via 'contacts' that sandwich the light-absorbing film. Previously, scientists have managed to remove hysteresis by using more 'selective' contact materials that ensure a one-way flow of electrons out of the solar cell.
In theory, changing these contact materials shouldn't have any effect on the movement of the charged defects within the perovskite, so it has remained a mystery why this appeared to 'fix' the hysteresis problem.