>
Pam Bondi says that if we prosecute everybody in the Epstein Files, the whole system will collapse
Dr Pollan at Harvard has cured schizophrenia using keto diet
We are winning. Big Pharma is finding it too difficult to get new vaccines approved under Trump
Abortion drugs discovered in Bill Gates' vaccines
Drone-launching underwater drone hitches a ride on ship and sub hulls
Humanoid Robots Get "Brains" As Dual-Use Fears Mount
SpaceX Authorized to Increase High Speed Internet Download Speeds 5X Through 2026
Space AI is the Key to the Technological Singularity
Velocitor X-1 eVTOL could be beating the traffic in just a year
Starlink smasher? China claims world's best high-powered microwave weapon
Wood scraps turn 'useless' desert sand into concrete
Let's Do a Detailed Review of Zorin -- Is This Good for Ex-Windows Users?
The World's First Sodium-Ion Battery EV Is A Winter Range Monster
China's CATL 5C Battery Breakthrough will Make Most Combustion Engine Vehicles OBSOLETE

A team of researchers at MIT has designed one of the strongest lightweight materials known, by compressing and fusing flakes of graphene, a two-dimensional form of carbon. The new material, a sponge-like configuration with a density of just 5 percent, can have a strength 10 times that of steel.
In its two-dimensional form, graphene is thought to be the strongest of all known materials. But researchers until now have had a hard time translating that two-dimensional strength into useful three-dimensional materials.
The new findings show that the crucial aspect of the new 3-D forms has more to do with their unusual geometrical configuration than with the material itself, which suggests that similar strong, lightweight materials could be made from a variety of materials by creating similar geometric features.
Highlights
* light as stryofoam but stronger than steel
* 20 times less dense than steel but 10 times stronger
* could lead to a replacement for helium for strong yet light dirigible applications
* bringing 2D strength of graphene to 3D materials
* new range of lightness and strength combinations for different applications