>
Tell General Mills To Reject GMO Wheat!
Climate Scientists declare the climate "emergency" is over
Trump's Cabinet is Officially Complete - Meet the Team Ready to Make America Great Again
Former Polish Minister: At Least Half of US Aid Was Laundered by Ukrainians...
Forget Houston. This Space Balloon Will Launch You to the Edge of the Cosmos From a Floating...
SpaceX and NASA show off how Starship will help astronauts land on the moon (images)
How aged cells in one organ can cause a cascade of organ failure
World's most advanced hypergravity facility is now open for business
New Low-Carbon Concrete Outperforms Today's Highway Material While Cutting Costs in Minnesota
Spinning fusion fuel for efficiency and Burn Tritium Ten Times More Efficiently
Rocket plane makes first civil supersonic flight since Concorde
Muscle-powered mechanism desalinates up to 8 liters of seawater per hour
Student-built rocket breaks space altitude record as it hits hypersonic speeds
Researchers discover revolutionary material that could shatter limits of traditional solar panels
It will likely to launch within two years, the machine will again double the number of qubits, to around 4,000. Crucially, it will also provide more-complex connections between qubits, allowing it to tackle more-complicated problems.
"Changing the underlying connectivity is going to be a game-changer," says Mark Novotny, a physicist at Charles University in Prague, who is exploring a D-Wave machine's applications to cybersecurity. "I'm basically drooling hoping for it. It's very exciting."
D-Wave's latest 2000 qubit iteration includes an upgrade that Novotny has been clamoring for. The feature gives more control when different groups of qubits go through the annealing process. In at least one case, D-Wave has shown that this can speed up certain calculations 1,000-fold. For Novotny, the feature is crucial because it will allow his team to "sample" qubits during the process, which opens the door to D-Wave exploring a different type of machine-learning algorithm that could learn to recognize much more complex patterns of cyberattacks.