>
Thune Moves Forward With 'Nuclear Option' To Confirm Trump's Nominees
Father Of Ukrainian Girl Brutally Murdered In US Missed Funeral Due To Martial Law
The Assassination of Charlie Kirk
Shell promises 10-minute EV charging with its magical battery fluid
Tesla Megapack Keynote LIVE - TESLA is Making Transformers !!
Methylene chloride (CH2Cl?) and acetone (C?H?O) create a powerful paint remover...
Engineer Builds His Own X-Ray After Hospital Charges Him $69K
Researchers create 2D nanomaterials with up to nine metals for extreme conditions
The Evolution of Electric Motors: From Bulky to Lightweight, Efficient Powerhouses
3D-Printing 'Glue Gun' Can Repair Bone Fractures During Surgery Filling-in the Gaps Around..
Kevlar-like EV battery material dissolves after use to recycle itself
Laser connects plane and satellite in breakthrough air-to-space link
Lucid Motors' World-Leading Electric Powertrain Breakdown with Emad Dlala and Eric Bach
Murder, UFOs & Antigravity Tech -- What's Really Happening at Huntsville, Alabama's Space Po
It will likely to launch within two years, the machine will again double the number of qubits, to around 4,000. Crucially, it will also provide more-complex connections between qubits, allowing it to tackle more-complicated problems.
"Changing the underlying connectivity is going to be a game-changer," says Mark Novotny, a physicist at Charles University in Prague, who is exploring a D-Wave machine's applications to cybersecurity. "I'm basically drooling hoping for it. It's very exciting."
D-Wave's latest 2000 qubit iteration includes an upgrade that Novotny has been clamoring for. The feature gives more control when different groups of qubits go through the annealing process. In at least one case, D-Wave has shown that this can speed up certain calculations 1,000-fold. For Novotny, the feature is crucial because it will allow his team to "sample" qubits during the process, which opens the door to D-Wave exploring a different type of machine-learning algorithm that could learn to recognize much more complex patterns of cyberattacks.