>
Harvard University is being paid off to publish fake health studies by Big Food
38% of US debt is up for refinancing in the next 18 months
America's Second-Richest Elected Official Is Acting Like He Wants to Be President
'Cyborg 1.0': World's First Robocop Debuts With Facial Recognition And 360° Camera Visio
The Immense Complexity of a Brain is Mapped in 3D for the First Time:
SpaceX, Palantir and Anduril Partnership Competing for the US Golden Dome Missile Defense Contracts
US government announces it has achieved ability to 'manipulate space and time' with new tech
Scientists reach pivotal breakthrough in quest for limitless energy:
Kawasaki CORLEO Walks Like a Robot, Rides Like a Bike!
World's Smallest Pacemaker is Made for Newborns, Activated by Light, and Requires No Surgery
Barrel-rotor flying car prototype begins flight testing
Coin-sized nuclear 3V battery with 50-year lifespan enters mass production
BREAKTHROUGH Testing Soon for Starship's Point-to-Point Flights: The Future of Transportation
REM sleep is known to help solidify memories, but the mechanism for making memories more permanent is not well-understood. A recent study published in Nature Neuroscience shows that, during REM sleep, some of the structures neurons use to make connections with each other are pruned, while others are maintained and strengthened. The findings indicate that sleep's role in solidifying memories comes through allowing the brain time to selectively eliminate or maintain newly formed neural connections.
Dendritic spines are small outgrowths on a neuron's dendrite, which is the portion of the neuron that receives chemical signals from other neurons. These spines enhance the strength of connections between neurons so they can play an important role in strengthening new neural circuits and solidifying new memories. These spines aren't permanent structures; instead, nerve cells can create new ones or get rid of existing ones (a process called pruning) as the importance of different connections shifts.
The new memories in this case were formed in mice, which were trained to complete a treadmill-like motor task. Then, the mice were either deprived of REM sleep or allowed to experience this form of sleep. The mice that were allowed REM showed significantly higher pruning of new dendritic spines compared to the mice that were REM sleep deprived. This difference in pruning was only seen for new dendritic spines, and previously existing dendritic spines were pruned at the same rate.