>
Researchers discover revolutionary material that could shatter the limits of traditional solar panel
Scientists Tested 8 Famous Cities. Only 1 Met The Standard For Tree Cover
How Long You Can Balance on 1 Leg Reveals Neuromuscular Aging
Leukemia: Symptoms, Causes, Treatments, and Natural Approaches
Forget Houston. This Space Balloon Will Launch You to the Edge of the Cosmos From a Floating...
SpaceX and NASA show off how Starship will help astronauts land on the moon (images)
How aged cells in one organ can cause a cascade of organ failure
World's most advanced hypergravity facility is now open for business
New Low-Carbon Concrete Outperforms Today's Highway Material While Cutting Costs in Minnesota
Spinning fusion fuel for efficiency and Burn Tritium Ten Times More Efficiently
Rocket plane makes first civil supersonic flight since Concorde
Muscle-powered mechanism desalinates up to 8 liters of seawater per hour
Student-built rocket breaks space altitude record as it hits hypersonic speeds
Researchers discover revolutionary material that could shatter limits of traditional solar panels
These devices absorb heat from sunlight and use it to evaporate water, leaving behind contaminants and reforming as a liquid in a separate container, and although they work, they can be relatively expensive and inefficient. Researchers have now developed a new type of solar still using carbon-coated paper that they say is cheaper and more than twice as efficient as existing devices.
Solar stills can be live-saving devices for people in developing countries or disaster-affected areas, but there's room for improvement according to the team made up of members from the University at Buffalo (UB), China's Fudan University and the University of Wisconsin-Madison.
"People lacking adequate drinking water have employed solar stills for years, however, these devices are inefficient," says Haomin Song, a co-author of the study. "For example, many devices lose valuable heat energy due to heating the bulk liquid during the evaporation process. Meanwhile, systems that require optical concentrators, such as mirrors and lenses, to concentrate the sunlight are costly."