>
Tucker Exposes Trump Would-Be Assassin Thomas Crooks' Social Media History, The FBI Coverup...
This Was A Major Red Flag In 2008, And Now It Is Happening Again!
Trump orders DOJ probe into Epstein's alleged ties with JPMorgan, Clinton and other Democrats
Blue Origin New Glenn 2 Next Launch and How Many Launches in 2026 and 2027
China's thorium reactor aims to fuse power and parity
Ancient way to create penicillin, a medicine from ancient era
Goodbye, Cavities? Scientists Just Found a Way to Regrow Tooth Enamel
Scientists Say They've Figured Out How to Transcribe Your Thoughts From an MRI Scan
SanDisk stuffed 1 TB of storage into the smallest Type-C thumb drive ever
Calling Dr. Grok. Can AI Do Better than Your Primary Physician?
HUGE 32kWh LiFePO4 DIY Battery w/ 628Ah Cells! 90 Minute Build
What Has Bitcoin Become 17 Years After Satoshi Nakamoto Published The Whitepaper?

The images show that the junctions between neurons, known as synapses, strengthen and grow during waking hours, then shrink by almost 20 percent during sleep, which opens up more room for them to grow, and learning to take place, when waking the next day.
In an effort to test their "synaptic homeostatis hypothesis (SHY)," which proposes that sleep is the price we pay for the plasticity of our brains, Drs. Chiara Cirelli and Giulio Tononi from the Wisconsin Center for Sleep and Consciousness used serial scanning 3D electron microscopy to capture images of the cerebral cortex of the mouse brain with extremely high spatial resolution.
The research project took four years and involved photographing, reconstructing and analyzing two areas of a mouse brain's cerebral cortex and ultimately resulted in the research team reconstructing 6,920 synapses and measuring their size so as to provide some visual proof of the SHY.