>
Will Payment Of 50 Percent Of Food Stamp Benefits Be Enough To Keep Widespread Rioting...
Interview 1985 - Revolution or Civil War on The Jimmy Dore Show
Steak 'n Shake Launches First-Ever Strategic Bitcoin Reserve
Mike Rowe appears to be receiving flak for daring to explore the potential dangers of vaccines...
The 6 Best LLM Tools To Run Models Locally
Testing My First Sodium-Ion Solar Battery
A man once paralyzed from the waist down now stands on his own, not with machines or wires,...
Review: Thumb-sized thermal camera turns your phone into a smart tool
Army To Bring Nuclear Microreactors To Its Bases By 2028
Nissan Says It's On Track For Solid-State Batteries That Double EV Range By 2028
Carbon based computers that run on iron
Russia flies strategic cruise missile propelled by a nuclear engine
100% Free AC & Heat from SOLAR! Airspool Mini Split AC from Santan Solar | Unboxing & Install
Engineers Discovered the Spectacular Secret to Making 17x Stronger Cement

Using more than 770,000 spit samples taken from their customers over the last five years, its researchers mapped how people moved and married in post-colonial America. And their choices—especially the ones that kept communities apart—shaped today's modern genetic landscape.
The study, published today in Nature Communications, combines a DNA database with family tree information collected over the company's 34-year history. "We're all living under the assumption that we are individual agents," says Catherine Ball, chief scientific officer at Ancestry and the leader of the study. "But people actually are living in the course of history." And from the moment they spit, send, and consent, DNA kit customers become actors in a much larger story—told through the massive data sets companies like Ancestry are accumulating from casual genealogists.
Ball's team of geneticists and statisticians started by pulling out subsets of closely related people from their 770,000 spit samples. In that analysis, each person appears as a dot, while their genetic relationships to everyone else in the database are sticks. The result, Ball says, "looks like a giant hairball."
From that hairball her team pulled out more than 60 unique genetic communities—Germans in Iowa and Mennonites in Kansas and Irish Catholics on the Eastern seaboard. Then they mined their way through generations of family trees (also provided by their customers) to build a migratory map. Finally, they paired up with a Harvard historian to understand why communities moved and dispersed the ways they did. Religion and race were powerful deterrents to gene flow. But nothing, it turned out, was stronger than the Mason Dixon line.