>
Democracy Cannot Lead to Self-Governance
BREAKING NOW: Learn Why MSM Is Suddenly Admitting That Smart Light Bulbs & Almost...
Donald Trump Doesn't Understand International Politics
The 1775 Two Step That Led to American Independence
xAI Grok 3.5 Renamed Grok 4 and Has Specialized Coding Model
AI goes full HAL: Blackmail, espionage, and murder to avoid shutdown
BREAKING UPDATE Neuralink and Optimus
1900 Scientists Say 'Climate Change Not Caused By CO2' – The Real Environment Movement...
New molecule could create stamp-sized drives with 100x more storage
DARPA fast tracks flight tests for new military drones
ChatGPT May Be Eroding Critical Thinking Skills, According to a New MIT Study
How China Won the Thorium Nuclear Energy Race
Sunlight-Powered Catalyst Supercharges Green Hydrogen Production by 800%
Could a new robotic prosthetic arm that detects signals from spinal nerve cells nudge researchers closer to creating an artificial limb that resembles the real thing?
The problem with muscle-controlled robotic arms is that they rely on twitches from amputated limbs, the fibers of which are often damaged.
"When an arm is amputated the nerve fibres and muscles are also severed, which means that it is very difficult to get meaningful signals from them to operate a prosthetic," explains Dario Farina, a professor of bioengineering at Imperial College London.
This limits the number of tasks the artificial limb can perform and explains why up to 50 percent of users end up dumping them in frustration, he claims. But what if the prosthetic made use of the nervous system instead, so that the signals sent from the motor neurons, which control muscle movement, could be deciphered more clearly? Could this lead to the development of more intuitive robotic arms? This is what Farina and his team wanted to find out.