>
At Least 10 Children Killed by Israeli Drones While Waiting Outside Clinic for Medical Aid and Food
IRS Gives Churches Blessing to Endorse Candidates
17 Out-Of-Place Artifacts That Suggest High-Tech Civilizations Existed Thousands (Or Millions)...
Magic mushrooms may hold the secret to longevity: Psilocybin extends lifespan by 57%...
Unitree G1 vs Boston Dynamics Atlas vs Optimus Gen 2 Robot– Who Wins?
LFP Battery Fire Safety: What You NEED to Know
Final Summer Solar Panel Test: Bifacial Optimization. Save Money w/ These Results!
MEDICAL MIRACLE IN JAPAN: Paralyzed Man Stands Again After Revolutionary Stem Cell Treatment!
Insulator Becomes Conducting Semiconductor And Could Make Superelastic Silicone Solar Panels
Slate Truck's Under $20,000 Price Tag Just Became A Political Casualty
Wisdom Teeth Contain Unique Stem Cell That Can Form Cartilage, Neurons, and Heart Tissue
Hay fever breakthrough: 'Molecular shield' blocks allergy trigger at the site
Could a new robotic prosthetic arm that detects signals from spinal nerve cells nudge researchers closer to creating an artificial limb that resembles the real thing?
The problem with muscle-controlled robotic arms is that they rely on twitches from amputated limbs, the fibers of which are often damaged.
"When an arm is amputated the nerve fibres and muscles are also severed, which means that it is very difficult to get meaningful signals from them to operate a prosthetic," explains Dario Farina, a professor of bioengineering at Imperial College London.
This limits the number of tasks the artificial limb can perform and explains why up to 50 percent of users end up dumping them in frustration, he claims. But what if the prosthetic made use of the nervous system instead, so that the signals sent from the motor neurons, which control muscle movement, could be deciphered more clearly? Could this lead to the development of more intuitive robotic arms? This is what Farina and his team wanted to find out.