>
Tony Blair is back in Lebanon to enforce the Zionist/Trump expansionist plan
My First Bitcoin Goes Global, Will Empower Educators Worldwide
GAME OVER! Congress EXPOSED for abusing security clearance to ENRICH THEMSELVES!!
New Gel Regrows Dental Enamel–Which Humans Cannot Do–and Could Revolutionize Tooth Care
Researchers want to drop lab grown brains into video games
Scientists achieve breakthrough in Quantum satellite uplink
Blue Origin New Glenn 2 Next Launch and How Many Launches in 2026 and 2027
China's thorium reactor aims to fuse power and parity
Ancient way to create penicillin, a medicine from ancient era
Goodbye, Cavities? Scientists Just Found a Way to Regrow Tooth Enamel
Scientists Say They've Figured Out How to Transcribe Your Thoughts From an MRI Scan
Calling Dr. Grok. Can AI Do Better than Your Primary Physician?

A major advance in daytime radiative cooling.
The past decade has seen a recasting of air conditioning as an ironic villain. This technology that we use to live in defiance of heat is itself, as a nearly unparalleled energy hog, contributing to the very heat it exists to dispel. We turn up the AC and the climate responds. According to the United States Department of Energy, air conditioning in the United States accounts for 117 million metric tons of carbon dioxide released into the atmosphere every year.
As described in the current issue of Science, researchers at the University of Colorado and the University of Wyoming have developed a new metamaterial (a material engineered to have extraordinary properties) that offers at least a partial potential solution in the form of daytime radiative cooling. That's the process by which incoming thermal energy from the Sun is exchanged for outgoing energy in the form of infrared radiation.
While efficient nighttime radiative cooling systems are pretty reasonable, achieving the same thing during daylight hours has been hampered by a fundamental problem: Absorbing even just a few percent of the incoming radiation from the Sun easily washes away any potential cooling benefits. What's needed is a material that strongly emits infrared radiation, but just barely absorbs energy from the Sun.
Materials scientists have accomplished this previously by using very complicated and difficult-to-produce nanomaterials. As the current paper explains, these prior attempts are all hampered by the fact that they require exotic and impractical fabrication techniques. The challenge here was to make something that could actually be scaled to real-world use.
The resulting material is composed of a layer of visibly transparent polymers randomly embedded with tiny spheres of glass and then covered over by a thin layer of silver. Basically, incoming light of many different wavelengths gets caught up in and then reemitted by the spheres. The randomization of these spheres is part of what accounts for the wide range (96 percent) of reflectivity across the spectrum of sunlight.