>
Former White House Advisor: "Trump to Release $150 Trillion Endowment"
The Mayo Clinic just tried to pull a fast one on the Trump administration...
'Cyborg 1.0': World's First Robocop Debuts With Facial Recognition And 360° Camera Visio
Dr. Aseem Malhotra Joins Alex Jones Live In-Studio! Top Medical Advisor To HHS Sec. RFK Jr. Gives...
Scientists reach pivotal breakthrough in quest for limitless energy:
Kawasaki CORLEO Walks Like a Robot, Rides Like a Bike!
World's Smallest Pacemaker is Made for Newborns, Activated by Light, and Requires No Surgery
Barrel-rotor flying car prototype begins flight testing
Coin-sized nuclear 3V battery with 50-year lifespan enters mass production
BREAKTHROUGH Testing Soon for Starship's Point-to-Point Flights: The Future of Transportation
Molten salt test loop to advance next-gen nuclear reactors
Quantum Teleportation Achieved Over Internet For The First Time
Watch the Jetson Personal Air Vehicle take flight, then order your own
Microneedles extract harmful cells, deliver drugs into chronic wounds
5G should be 10 to 20 times faster than today's cell-phone networks. 5G will operate in a high-frequency portion of the radio spectrum, known as millimeter wave. It has a lot of available bandwidth and should make it possible for wireless devices to process data with minimal delays. But since its wavelengths are much shorter, it is more easily obstructed. And because it has never been used for consumer mobile services, carriers are still learning how 5G signals will behave in different types of terrain and weather. "We need to look at how the signals are affected by things like snow, rain, sleet, hail, maple trees, oak trees, and spruce trees, because each of those will be different," says AT&T research engineer Bob Bennett.
The problem: most 5G measurement equipment is so expensive, fragile, and bulky that it can be deployed outdoors for only a few hours at a time. Bennett and colleagues say that far more real-world data is needed to properly develop the technology, so they have created weatherproof radios the size of toaster ovens and installed them across AT and T's 260-acre campus in Middletown, New Jersey, which was once part of Bell Labs.
Since deploying the radios last September, the engineers have seen how tree leaves, heavy rain, and truck traffic all obstruct millimeter-wave signals to some extent. AT and T plans to share the information with the rest of the telecom industry to aid in the design of 5G technical specifications, base stations, modems, smartphone chips, and more. The new technology won't be commercially widespread until after 2020, but these small, homemade radios are a crucial step toward making it real.