>
Epstein Client List BOMBSHELL, Musk's 'America Party' & Tucker's Iran Interview | PB
The Hidden Cost of Union Power: Rich Contracts and Layoffs Down the Road
Do They Deserve It? Mexico Is Collapsing As The US Deports Illegals Back Home
Copper Soars To Record High As Trump Unleashes 50% Tariff
Insulator Becomes Conducting Semiconductor And Could Make Superelastic Silicone Solar Panels
Slate Truck's Under $20,000 Price Tag Just Became A Political Casualty
Wisdom Teeth Contain Unique Stem Cell That Can Form Cartilage, Neurons, and Heart Tissue
Hay fever breakthrough: 'Molecular shield' blocks allergy trigger at the site
AI Getting Better at Medical Diagnosis
Tesla Starting Integration of XAI Grok With Cars in Week or So
Bifacial Solar Panels: Everything You NEED to Know Before You Buy
INVASION of the TOXIC FOOD DYES:
Let's Test a Mr Robot Attack on the New Thunderbird for Mobile
Facial Recognition - Another Expanding Wolf in Sheep's Clothing Technology
From deep-brain stimulation that controls the symptoms of depression to zapping our grey matter to improve our vision, electrical current applied to our brains holds a lot of promise. Now researchers at Imperial College London have shown that a low-voltage stream of electricity can be used to bring different brain regions in sync with each other, leading to improved memory ability and the hope of treating neurological disorders.
In the study, the researchers used what's known as transcranial alternating current stimulation (tACS) to affect the way in which the electric current in two brain regions was oscillating. The weak electric current applied to the forehead from tACS brought the middle frontal gyrus and the inferior parietal lobule into sync with each other. Both of these areas are known to be involved in working memory, which is our extreme short-term memory that helps us function in the here-and-now. An example of working memory would be the way in which we'd be able to recall what we needed when we go out to our cars to retrieve a forgotten item.