>
How a 27-Year-Old Codebreaker Busted the Myth of Bitcoin's Anonymity
Old World Order is COLLAPSING: The Death of Europe and the Rise of China
Energy Secretary Expects Fusion to Power the World in 8-15 Years
South Koreans Feel Betrayed Over Immigration Raid, Now Comes the Blowback
Tesla Megapack Keynote LIVE - TESLA is Making Transformers !!
Methylene chloride (CH2Cl?) and acetone (C?H?O) create a powerful paint remover...
Engineer Builds His Own X-Ray After Hospital Charges Him $69K
Researchers create 2D nanomaterials with up to nine metals for extreme conditions
The Evolution of Electric Motors: From Bulky to Lightweight, Efficient Powerhouses
3D-Printing 'Glue Gun' Can Repair Bone Fractures During Surgery Filling-in the Gaps Around..
Kevlar-like EV battery material dissolves after use to recycle itself
Laser connects plane and satellite in breakthrough air-to-space link
Lucid Motors' World-Leading Electric Powertrain Breakdown with Emad Dlala and Eric Bach
Murder, UFOs & Antigravity Tech -- What's Really Happening at Huntsville, Alabama's Space Po
The EU Horizon 2020 has launched Bio4Comp, a five-year €6.1M project to build more powerful and safer biocomputers that could outperform quantum computing.
The Bio4Comp project has the ambitious goal of building a computer with greater processing speed and lower energy consumption than any of the most advanced computers existing today. Ultimately, this could translate into enabling large, error-free security software to be fast enough for practical use, potentially wiping out all current security concerns.
A total of €6.1M have been awarded to an European team of researchers from TU Dresden, Fraunhofer-Gesellschaft, Lund University, Linnaeus University and Bar Ilan University, as well as the British company Molecular Sense.
"Practically all really interesting mathematical problems of our time cannot be computed efficiently with our current computer technology," says Dan V. Nicolau from Molecular Sense, who had the original idea of harnessing the power of biomolecules to build better computers. The team plans to solve this problem by scaling up its first biocomputer prototype, whose mechanisms have been published in the journal PNAS.