>
Donald Trump's Autocratic One-Man Government Regime: Doomed to Failure? But Not Before...
The BRICS New Development Bank (NDB) versus US Dollar Empire: Quietly Challenging US...
243 Recoil: How Hard Does the 243 Winchester Kick?
Wise words (Elon Musk responding to Ron Paul's tweet on the Big Beautiful Bill)
xAI Grok 3.5 Renamed Grok 4 and Has Specialized Coding Model
AI goes full HAL: Blackmail, espionage, and murder to avoid shutdown
BREAKING UPDATE Neuralink and Optimus
1900 Scientists Say 'Climate Change Not Caused By CO2' – The Real Environment Movement...
New molecule could create stamp-sized drives with 100x more storage
DARPA fast tracks flight tests for new military drones
ChatGPT May Be Eroding Critical Thinking Skills, According to a New MIT Study
How China Won the Thorium Nuclear Energy Race
Sunlight-Powered Catalyst Supercharges Green Hydrogen Production by 800%
Since the beryllium anodes have already been received at the Middlesex NJ lab, we will soon have a complete set of beryllium electrodes ready for our next set of experiments. This will be an important milestone for the project, as our effort to obtain the beryllium electrodes began in mid-2014, as soon as our crowdfunding effort had raised the money needed for the new set. Beryllium is crucial to the next step in the experiment for two reasons. First, as a light element with an atomic charge, or "z", of only 4, it will eliminate any high-z impurities in the plasma, optimizing FF-1's performance. Second, beryllium is highly transparent to x-rays, so will be much better able to withstand the heavy x-ray flux from the plasmoid as we increase fusion yields.
Once our current experiments with tungsten are complete, we will still need two or three months to prepare for the beryllium experiments.