>
China Will Close the Semiconductor Gap After EUV Lithography Breakthrough
The Five Big Lies of Vaccinology
Large global study analyzing data from 192 countries has sparked intense debate by suggesting...
EngineAI T800: Born to Disrupt! #EngineAI #robotics #newtechnology #newproduct
This Silicon Anode Breakthrough Could Mark A Turning Point For EV Batteries [Update]
Travel gadget promises to dry and iron your clothes – totally hands-free
Perfect Aircrete, Kitchen Ingredients.
Futuristic pixel-raising display lets you feel what's onscreen
Cutting-Edge Facility Generates Pure Water and Hydrogen Fuel from Seawater for Mere Pennies
This tiny dev board is packed with features for ambitious makers
Scientists Discover Gel to Regrow Tooth Enamel
Vitamin C and Dandelion Root Killing Cancer Cells -- as Former CDC Director Calls for COVID-19...
Galactic Brain: US firm plans space-based data centers, power grid to challenge China

Since the beryllium anodes have already been received at the Middlesex NJ lab, we will soon have a complete set of beryllium electrodes ready for our next set of experiments. This will be an important milestone for the project, as our effort to obtain the beryllium electrodes began in mid-2014, as soon as our crowdfunding effort had raised the money needed for the new set. Beryllium is crucial to the next step in the experiment for two reasons. First, as a light element with an atomic charge, or "z", of only 4, it will eliminate any high-z impurities in the plasma, optimizing FF-1's performance. Second, beryllium is highly transparent to x-rays, so will be much better able to withstand the heavy x-ray flux from the plasmoid as we increase fusion yields.
Once our current experiments with tungsten are complete, we will still need two or three months to prepare for the beryllium experiments.