>
Iran (So Far Away) - Official Music Video
COMEX Silver: 21 Days Until 429 Million Ounces of Demand Meets 103 Million Supply. (March Crisis)
Marjorie Taylor Greene: MAGA Was "All a Lie," "Isn't Really About America or the
Why America's Two-Party System Will Never Threaten the True Political Elites
How underwater 3D printing could soon transform maritime construction
Smart soldering iron packs a camera to show you what you're doing
Look, no hands: Flying umbrella follows user through the rain
Critical Linux Warning: 800,000 Devices Are EXPOSED
'Brave New World': IVF Company's Eugenics Tool Lets Couples Pick 'Best' Baby, Di
The smartphone just fired a warning shot at the camera industry.
A revolutionary breakthrough in dental science is changing how we fight tooth decay
Docan Energy "Panda": 32kWh for $2,530!
Rugged phone with multi-day battery life doubles as a 1080p projector
4 Sisters Invent Electric Tractor with Mom and Dad and it's Selling in 5 Countries

Drawing inspiration from the plant world, researchers have invented a new electrode that could boost our current solar energy storage by an astonishing 3,000 percent.
The technology is flexible and can be attached directly to solar cells - which means we could finally be one step closer to smartphones and laptops that draw their power from the Sun, and never run out.
A major problem with reliably using solar energy as a power source is finding an efficient way to store it for later use without leakage over time.
For that purpose, engineers have been turning to supercapacitors - a type of technology that can charge extremely fast and release energy in large bursts. But for now, supercapacitors aren't able to store enough energy to make them viable as solar batteries.
So a team from RMIT University in Melbourne, Australia decided to investigate how living organisms manage to cram a lot of energy into a small space, and their imagination was soon spurred on by the ingenious fractal-based leaves of a common North American plant - the western swordfern (Polystichum munitum).