>
How Do Dumb People or Corrupt People Get Elected to Top Positions?
Brand New Solar Battery With THIS Amazing Feature! EG4 314Ah Wall Mount Review
This New Forecast Just Got WAY Worse...
S3E4: The Freedom Movement Funded Its Own Prison
The day of the tactical laser weapon arrives
'ELITE': The Palantir App ICE Uses to Find Neighborhoods to Raid
Solar Just Took a Huge Leap Forward!- CallSun 215 Anti Shade Panel
XAI Grok 4.20 and OpenAI GPT 5.2 Are Solving Significant Previously Unsolved Math Proofs
Watch: World's fastest drone hits 408 mph to reclaim speed record
Ukrainian robot soldier holds off Russian forces by itself in six-week battle
NASA announces strongest evidence yet for ancient life on Mars
Caltech has successfully demonstrated wireless energy transfer...
The TZLA Plasma Files: The Secret Health Sovereignty Tech That Uncle Trump And The CIA Tried To Bury

(Natural News) Recently, Swedish scientists successfully developed cartilage tissue by printing stem cells through a 3D bioprinter. As part of the study, a team of researchers at the Sahlgrenska Academy and the Chalmers University of Technology in Sweden harvested cartilage cells from knee surgery patients. The experts then coaxed the cells into becoming pluripotent stem cells. These stem cells were touted for their potential in developing into different types of cells. The researcher expanded and encapsulated the stem cells in a nanofibrillated cellulose. The research team then used a 3D bioprinter to print the stem cells into a structure.
The team took three years to identify the right method in surviving the stem cells during printing. According to the experts, using large amounts of live stem cells can make the process possible. "In nature, the differentiation of stem cells into cartilage is a simple process, but it's much more complicated to accomplish in a test tube. We're the first to succeed with it, and we did so without any animal testing whatsoever. We investigated various methods and combined different growth factors. Each individual stem cell is encased in nanocellulose, which allows it to survive the process of being printed into a 3D structure. We also harvested mediums from other cells that contain the signals that stem cells use to communicate with each other so called conditioned medium. In layman's terms, our theory is that we managed to trick the cells into thinking that they aren't alone. Therefore the cells multiplied before we differentiated them," said lead researcher Professor Stina Simonsson in ScienceDaily.com.
Potential use of bioprinted cartilage
Surgeons who examined the artificial cartilage confirmed that the bioprinted tissue contained properties that were similar to real human cartilage. According to the surgeons, the bioprinted cartilage contained Type-II collagen and perfectly-formed cells. The cellular structure of the bioprinted tissue also appeared to be similar to human cartilage samples, the surgeons noted.