>
Sanctioned Russian Giant Rostec Bypasses Banks with Tron-Based RUBx Stablecoin
House Passes Trump's 'Big Beautiful Bill' That Will Bring the 2026 Military Budget Over
Abandoned for 1,000 Years: What We Found Inside This Castle Was Unreal
Miko Peled Dismantles Every Pro-Israel Talking Point
xAI Grok 3.5 Renamed Grok 4 and Has Specialized Coding Model
AI goes full HAL: Blackmail, espionage, and murder to avoid shutdown
BREAKING UPDATE Neuralink and Optimus
1900 Scientists Say 'Climate Change Not Caused By CO2' – The Real Environment Movement...
New molecule could create stamp-sized drives with 100x more storage
DARPA fast tracks flight tests for new military drones
ChatGPT May Be Eroding Critical Thinking Skills, According to a New MIT Study
How China Won the Thorium Nuclear Energy Race
Sunlight-Powered Catalyst Supercharges Green Hydrogen Production by 800%
(Natural News) Recently, Swedish scientists successfully developed cartilage tissue by printing stem cells through a 3D bioprinter. As part of the study, a team of researchers at the Sahlgrenska Academy and the Chalmers University of Technology in Sweden harvested cartilage cells from knee surgery patients. The experts then coaxed the cells into becoming pluripotent stem cells. These stem cells were touted for their potential in developing into different types of cells. The researcher expanded and encapsulated the stem cells in a nanofibrillated cellulose. The research team then used a 3D bioprinter to print the stem cells into a structure.
The team took three years to identify the right method in surviving the stem cells during printing. According to the experts, using large amounts of live stem cells can make the process possible. "In nature, the differentiation of stem cells into cartilage is a simple process, but it's much more complicated to accomplish in a test tube. We're the first to succeed with it, and we did so without any animal testing whatsoever. We investigated various methods and combined different growth factors. Each individual stem cell is encased in nanocellulose, which allows it to survive the process of being printed into a 3D structure. We also harvested mediums from other cells that contain the signals that stem cells use to communicate with each other so called conditioned medium. In layman's terms, our theory is that we managed to trick the cells into thinking that they aren't alone. Therefore the cells multiplied before we differentiated them," said lead researcher Professor Stina Simonsson in ScienceDaily.com.
Potential use of bioprinted cartilage
Surgeons who examined the artificial cartilage confirmed that the bioprinted tissue contained properties that were similar to real human cartilage. According to the surgeons, the bioprinted cartilage contained Type-II collagen and perfectly-formed cells. The cellular structure of the bioprinted tissue also appeared to be similar to human cartilage samples, the surgeons noted.