>
Trump Cryptically Writes "Here We Go!" In Reaction To Russia-Poland Drone Incident, Oil Sp
Qatar Says It Reserves Right To Retaliate Against 'Barbaric' Netanyahu
Melania, Please Talk To Donald About Epstein
Trump Announces Crackdown On Drug Ads On TV, Potentially Disrupting Billions In Ad Spending
Methylene chloride (CH2Cl?) and acetone (C?H?O) create a powerful paint remover...
Engineer Builds His Own X-Ray After Hospital Charges Him $69K
Researchers create 2D nanomaterials with up to nine metals for extreme conditions
The Evolution of Electric Motors: From Bulky to Lightweight, Efficient Powerhouses
3D-Printing 'Glue Gun' Can Repair Bone Fractures During Surgery Filling-in the Gaps Around..
Kevlar-like EV battery material dissolves after use to recycle itself
Laser connects plane and satellite in breakthrough air-to-space link
Lucid Motors' World-Leading Electric Powertrain Breakdown with Emad Dlala and Eric Bach
Murder, UFOs & Antigravity Tech -- What's Really Happening at Huntsville, Alabama's Space Po
If the NASA emdrive performance of 1.2 millinewtons per kilowatt.
8.3 TeraWatts of power would be needed to provide 10 million newtons of thrust to accelerate a 1000 ton space-craft at 1 gee of acceleration. We have no power source that could generate 8.3 TeraWatts for a 1000 ton spacecraft.
If EMDrive performance increases with the Q-factor as some have theorized, then we could tune the cavity and make it superconducting. If we take the NASA EM-Drives and pump the Q factor to ~30 million, then about 2 GW power is needed for the sustained 1 gee thrust.
Theoretical nuclear fission reactors could power such a spacecraft. Gas-core or magnetic collimator fission-fragment reactor might be work but have been theoretically designed and have very limited experimental development.A fast-spectrum reactor with a thermal output of ~ 6 GW and ~35 % thermal conversion efficiency would be a first pass design to supply the power.