>
High-Level Sources: Covert War In US, Israeli & Foreign Intel Agencies, Behind Epstein Case...
Hegseth Hosts Netanyahu at the Pentagon, Says It Was an 'Honor' To Be Part of the War Agains
Saagar Enjeti on the Dangerous New Developments in Pam Bondi's Epstein Cover-Up
Does Elon Musk's Third Party Have a Prayer? Trump Is Not a Believer
Insulator Becomes Conducting Semiconductor And Could Make Superelastic Silicone Solar Panels
Slate Truck's Under $20,000 Price Tag Just Became A Political Casualty
Wisdom Teeth Contain Unique Stem Cell That Can Form Cartilage, Neurons, and Heart Tissue
Hay fever breakthrough: 'Molecular shield' blocks allergy trigger at the site
AI Getting Better at Medical Diagnosis
Tesla Starting Integration of XAI Grok With Cars in Week or So
Bifacial Solar Panels: Everything You NEED to Know Before You Buy
INVASION of the TOXIC FOOD DYES:
Let's Test a Mr Robot Attack on the New Thunderbird for Mobile
Facial Recognition - Another Expanding Wolf in Sheep's Clothing Technology
If the NASA emdrive performance of 1.2 millinewtons per kilowatt.
8.3 TeraWatts of power would be needed to provide 10 million newtons of thrust to accelerate a 1000 ton space-craft at 1 gee of acceleration. We have no power source that could generate 8.3 TeraWatts for a 1000 ton spacecraft.
If EMDrive performance increases with the Q-factor as some have theorized, then we could tune the cavity and make it superconducting. If we take the NASA EM-Drives and pump the Q factor to ~30 million, then about 2 GW power is needed for the sustained 1 gee thrust.
Theoretical nuclear fission reactors could power such a spacecraft. Gas-core or magnetic collimator fission-fragment reactor might be work but have been theoretically designed and have very limited experimental development.A fast-spectrum reactor with a thermal output of ~ 6 GW and ~35 % thermal conversion efficiency would be a first pass design to supply the power.