>
The Days of Democracy Are Over
Elon Musk Described an AI Device to Replace Phones in 5 Years
Deposit Insurance For Billionaires?
Rep. Troy Balderson Is Right: Coal And Gas Drive Affordable, Reliable, And Clean Energy
Graphene Dream Becomes a Reality as Miracle Material Enters Production for Better Chips, Batteries
Virtual Fencing May Allow Thousands More Cattle to Be Ranched on Land Rather Than in Barns
Prominent Personalities Sign Letter Seeking Ban On 'Development Of Superintelligence'
Why 'Mirror Life' Is Causing Some Genetic Scientists To Freak Out
Retina e-paper promises screens 'visually indistinguishable from reality'
Scientists baffled as interstellar visitor appears to reverse thrust before vanishing behind the sun
Future of Satellite of Direct to Cellphone
Amazon goes nuclear with new modular reactor plant
China Is Making 800-Mile EV Batteries. Here's Why America Can't Have Them

The lack of gravity wreaks havoc on the body, while radiation exposure leaves astronauts with an increased risk of cancer and other diseases. A team from Australian National University (ANU) has developed a new nanomaterial that could protect space travelers with a thin film that dynamically reflects harmful radiation.
Beyond the safety bubble of the Earth's magnetosphere, radiation from the Sun and more distant sources can do some serious damage. Spacesuits, spacecraft and instruments all have thick shielding to protect people and objects from harmful infrared and ultraviolet rays, but the materials are usually big and bulky. That's not ideal in space, where mobility and minimizing weight are paramount.