>
Wise words (Elon Musk responding to Ron Paul's tweet on the Big Beautiful Bill)
People Are Being Involuntarily Committed, Jailed After Spiraling Into "ChatGPT Psychosis"
Dr. Lee Merritt: What You Need to Know About Parasites and Biowarfare
How We Manage a Garden With 11 Kids (2025 Garden Tour)
xAI Grok 3.5 Renamed Grok 4 and Has Specialized Coding Model
AI goes full HAL: Blackmail, espionage, and murder to avoid shutdown
BREAKING UPDATE Neuralink and Optimus
1900 Scientists Say 'Climate Change Not Caused By CO2' – The Real Environment Movement...
New molecule could create stamp-sized drives with 100x more storage
DARPA fast tracks flight tests for new military drones
ChatGPT May Be Eroding Critical Thinking Skills, According to a New MIT Study
How China Won the Thorium Nuclear Energy Race
Sunlight-Powered Catalyst Supercharges Green Hydrogen Production by 800%
The lack of gravity wreaks havoc on the body, while radiation exposure leaves astronauts with an increased risk of cancer and other diseases. A team from Australian National University (ANU) has developed a new nanomaterial that could protect space travelers with a thin film that dynamically reflects harmful radiation.
Beyond the safety bubble of the Earth's magnetosphere, radiation from the Sun and more distant sources can do some serious damage. Spacesuits, spacecraft and instruments all have thick shielding to protect people and objects from harmful infrared and ultraviolet rays, but the materials are usually big and bulky. That's not ideal in space, where mobility and minimizing weight are paramount.