>
Tell General Mills To Reject GMO Wheat!
Climate Scientists declare the climate "emergency" is over
Trump's Cabinet is Officially Complete - Meet the Team Ready to Make America Great Again
Former Polish Minister: At Least Half of US Aid Was Laundered by Ukrainians...
Forget Houston. This Space Balloon Will Launch You to the Edge of the Cosmos From a Floating...
SpaceX and NASA show off how Starship will help astronauts land on the moon (images)
How aged cells in one organ can cause a cascade of organ failure
World's most advanced hypergravity facility is now open for business
New Low-Carbon Concrete Outperforms Today's Highway Material While Cutting Costs in Minnesota
Spinning fusion fuel for efficiency and Burn Tritium Ten Times More Efficiently
Rocket plane makes first civil supersonic flight since Concorde
Muscle-powered mechanism desalinates up to 8 liters of seawater per hour
Student-built rocket breaks space altitude record as it hits hypersonic speeds
Researchers discover revolutionary material that could shatter limits of traditional solar panels
Engineers at the University of Twente have developed a new biopsy robot made from 3D-printed plastic. This allows it to operate inside a MRI scanner so accurate biopsies can be taken with real-time visualization of the abnormal tissue. It's hoped the device will offer doctors a new way to accurately biopsy and diagnose breast cancer in its early stages.
The Stormram 4 has been designed to be free of all the conductive metals that robots usually consist of, making it functional under the strong magnetic field within an MRI scanner. The device is small, 3D printed from plastic, and is driven by air-pressure instead of electricity.
This fourth iteration of the robot is the smallest the team has developed and it can now fit inside an MRI scanner's slim tunnel. Five-meter (16.4-ft) long air-pipes run to an external controller, allowing the robot to be directed from outside the MRI. Preliminary tests show the robot can target tissue with sub-millimeter precision when equipped with an MRI compatible needle, a degree of accuracy that would be impossible for a human operator to achieve.