>
Trump defends AG Pam Bondi amid Epstein file backlash: 'Let her do her job'
Metal fuses in space - with no heat or pressure
In case you missed it...AIRLINE GIANT EMIRATES TO ACCEPT BITCOIN AND CRYPTO FOR FLIGHTS
Pentagon to become largest shareholder in rare earth miner MP Materials; shares surge 50%
Magic mushrooms may hold the secret to longevity: Psilocybin extends lifespan by 57%...
Unitree G1 vs Boston Dynamics Atlas vs Optimus Gen 2 Robot– Who Wins?
LFP Battery Fire Safety: What You NEED to Know
Final Summer Solar Panel Test: Bifacial Optimization. Save Money w/ These Results!
MEDICAL MIRACLE IN JAPAN: Paralyzed Man Stands Again After Revolutionary Stem Cell Treatment!
Insulator Becomes Conducting Semiconductor And Could Make Superelastic Silicone Solar Panels
Slate Truck's Under $20,000 Price Tag Just Became A Political Casualty
Wisdom Teeth Contain Unique Stem Cell That Can Form Cartilage, Neurons, and Heart Tissue
Hay fever breakthrough: 'Molecular shield' blocks allergy trigger at the site
The results will now give scientists an unprecedented glimpse at how these harmful deposits function at a molecular level, and could lead to a number of new treatments to prevent them from forming – and in doing so, help to combat Alzheimer's and dementia.
"This is a tremendous step forward," says one of the team, Bernardino Ghetti from Indiana University.
"It's clear that tau is extremely important to the progression of Alzheimer's disease and certain forms of dementia. In terms of designing therapeutic agents, the possibilities are now enormous."
In the new study, researchers led by the MRC Laboratory of Molecular Biology (LMB) in the UK extracted tau protein filaments from the brain of a deceased patient with a confirmed diagnosis of Alzheimer's disease, and imaged them using a technique called called cryo-electron microscopy (cryo-EM).