>
Former White House Advisor: "Trump to Release $150 Trillion Endowment"
The Mayo Clinic just tried to pull a fast one on the Trump administration...
'Cyborg 1.0': World's First Robocop Debuts With Facial Recognition And 360° Camera Visio
Dr. Aseem Malhotra Joins Alex Jones Live In-Studio! Top Medical Advisor To HHS Sec. RFK Jr. Gives...
Scientists reach pivotal breakthrough in quest for limitless energy:
Kawasaki CORLEO Walks Like a Robot, Rides Like a Bike!
World's Smallest Pacemaker is Made for Newborns, Activated by Light, and Requires No Surgery
Barrel-rotor flying car prototype begins flight testing
Coin-sized nuclear 3V battery with 50-year lifespan enters mass production
BREAKTHROUGH Testing Soon for Starship's Point-to-Point Flights: The Future of Transportation
Molten salt test loop to advance next-gen nuclear reactors
Quantum Teleportation Achieved Over Internet For The First Time
Watch the Jetson Personal Air Vehicle take flight, then order your own
Microneedles extract harmful cells, deliver drugs into chronic wounds
NASA has focused on the use of KiloPower for potential Mars human exploration. NASA has examined the need for power on Mars and determined that approximately 40 kilowatts would be needed. Five 10-kilowatt KiloPower reactors (four main reactors plus one spare) could solve this power requirement.
During steady state, a reactor operates with a neutron multiplication factor of '1.000'; that is, the number of neutrons in the core remains unchanged from one generation to the next generation.
Almost every perturbation in a reactor's operation ultimately translates into either a positive or a negative reactivity insertion incident, defined as the state in which the core neutron multiplication factor deviates from its steady state value. Sudden and significant positive reactivity insertion can lead to runaway reactor kinetics, wherein temperatures can exceed thermal limits very rapidly.