>
Pentagon To Send 200 Troops to Nigeria
Trump Says He May Send Second Aircraft Carrier to Middle East To Prepare for Potential Attack...
A Market Crash and Recession Are Bullish, Not Bearish
What Are They Still Hiding? New Epstein Questions Point to a Much Bigger Cover-Up
Drone-launching underwater drone hitches a ride on ship and sub hulls
Humanoid Robots Get "Brains" As Dual-Use Fears Mount
SpaceX Authorized to Increase High Speed Internet Download Speeds 5X Through 2026
Space AI is the Key to the Technological Singularity
Velocitor X-1 eVTOL could be beating the traffic in just a year
Starlink smasher? China claims world's best high-powered microwave weapon
Wood scraps turn 'useless' desert sand into concrete
Let's Do a Detailed Review of Zorin -- Is This Good for Ex-Windows Users?
The World's First Sodium-Ion Battery EV Is A Winter Range Monster
China's CATL 5C Battery Breakthrough will Make Most Combustion Engine Vehicles OBSOLETE

Now, to make CubeSats more maneuverable, a team from Purdue University has developed a system that would allow the mini satellites to safely propel themselves by spraying jets of ordinary water.
The Purdue prototype was a CubeSat measuring 10 cm3 (0.6 in3) and weighing 2.8 kg (6 lb), loaded with off-the-shelf electronic components normally used for Internet of Things devices. There's a computer that wirelessly receives instructions and relays them to an inertial measurement unit that works out how to act on them. But the star of the show was the propulsion system, dubbed a Film-Evaporation MEMS Tunable Array (FEMTA) thruster.
Four of these FEMTA thrusters were built into the prototype, each one carrying about a teaspoon of ultra-purified water. The tank is full of capillaries about 10 microns wide, which is too small for the water to flow out thanks to its surface tension. To control when it escapes, small heaters around the edges of these holes can be activated on demand, warming the water into vapor and creating tiny blasts that turn the craft.