>
Tucker shares 'backroom' info about brawl between him and Israel First crowd…
Why Isn't There a Cure for Alzheimer's Disease?
US Government Revokes 80,000 Visas
OpenAI CEO Sam Altman served legal papers during speech in dramatic on-stage ambush
Goodbye, Cavities? Scientists Just Found a Way to Regrow Tooth Enamel
Scientists Say They've Figured Out How to Transcribe Your Thoughts From an MRI Scan
SanDisk stuffed 1 TB of storage into the smallest Type-C thumb drive ever
Calling Dr. Grok. Can AI Do Better than Your Primary Physician?
HUGE 32kWh LiFePO4 DIY Battery w/ 628Ah Cells! 90 Minute Build
What Has Bitcoin Become 17 Years After Satoshi Nakamoto Published The Whitepaper?
Japan just injected artificial blood into a human. No blood type needed. No refrigeration.
The 6 Best LLM Tools To Run Models Locally
Testing My First Sodium-Ion Solar Battery
A man once paralyzed from the waist down now stands on his own, not with machines or wires,...

The approach could revolutionize regenerative medicine, enabling the production of complex tissues and cartilage that would potentially support, repair or augment diseased and damaged areas of the body.
While bioprinting has advanced significantly over the last 15 years, the pursuit of morphological complexity and biological functionality in fabricated cellular constructs remains challenging. Criteria relating to the printing process, including cytocompatibility, the resolution of cell placement and structural complexity, and the maturation of biologically active tissues, must all be addressed if printed tissues are to play a major role in regenerative medicine. To date, no single fabrication approach has addressed the gamut of design challenge for synthetic cellularized structures, however progress has been made by appropriating a range of 3D printing methodologies, including extrusion, laser-induced forward transfer, and droplet-based ejection.