>
6.5x55 Swedish vs. 6.5 Creedmoor: The New 6.5mm Hotness
Best 7mm PRC Ammo: Hunting and Long-Distance Target Shooting
Christmas Truce of 1914, World War I - For Sharing, For Peace
EngineAI T800: Born to Disrupt! #EngineAI #robotics #newtechnology #newproduct
This Silicon Anode Breakthrough Could Mark A Turning Point For EV Batteries [Update]
Travel gadget promises to dry and iron your clothes – totally hands-free
Perfect Aircrete, Kitchen Ingredients.
Futuristic pixel-raising display lets you feel what's onscreen
Cutting-Edge Facility Generates Pure Water and Hydrogen Fuel from Seawater for Mere Pennies
This tiny dev board is packed with features for ambitious makers
Scientists Discover Gel to Regrow Tooth Enamel
Vitamin C and Dandelion Root Killing Cancer Cells -- as Former CDC Director Calls for COVID-19...
Galactic Brain: US firm plans space-based data centers, power grid to challenge China

Intel researchers and parters developed supervised convolutional architectures for discriminating signals in high-energy physics data as well as semi-supervised architectures for localizing and
classifying extreme weather in climate data. Our Intelcaffe based implementation obtains ∼2TFLOP/s on a single Cori Phase-II Xeon-Phi node. We use a hybrid strategy employing synchronous node-groups, while using asynchronous communication across groups. They use this strategy to scale training of a single model to ∼9600 Xeon-Phi nodes; obtaining peak performance of 11.73-15.07 PFLOP/s and sustained performance of 11.41-13.27 PFLOP/s. At scale, their HEP architecture produces state-of-the-art classification accuracy on a dataset with 10 Million images, exceeding
that achieved by selections on high-level physics-motivated features. Their semi-supervised architecture successfully extracts weather patterns in a 15TB climate dataset. Their results demonstrate that Deep Learning can be optimized and scaled effectively on many-core, HPC systems.