>
Tell General Mills To Reject GMO Wheat!
Climate Scientists declare the climate "emergency" is over
Trump's Cabinet is Officially Complete - Meet the Team Ready to Make America Great Again
Former Polish Minister: At Least Half of US Aid Was Laundered by Ukrainians...
Forget Houston. This Space Balloon Will Launch You to the Edge of the Cosmos From a Floating...
SpaceX and NASA show off how Starship will help astronauts land on the moon (images)
How aged cells in one organ can cause a cascade of organ failure
World's most advanced hypergravity facility is now open for business
New Low-Carbon Concrete Outperforms Today's Highway Material While Cutting Costs in Minnesota
Spinning fusion fuel for efficiency and Burn Tritium Ten Times More Efficiently
Rocket plane makes first civil supersonic flight since Concorde
Muscle-powered mechanism desalinates up to 8 liters of seawater per hour
Student-built rocket breaks space altitude record as it hits hypersonic speeds
Researchers discover revolutionary material that could shatter limits of traditional solar panels
Intel researchers and parters developed supervised convolutional architectures for discriminating signals in high-energy physics data as well as semi-supervised architectures for localizing and
classifying extreme weather in climate data. Our Intelcaffe based implementation obtains ∼2TFLOP/s on a single Cori Phase-II Xeon-Phi node. We use a hybrid strategy employing synchronous node-groups, while using asynchronous communication across groups. They use this strategy to scale training of a single model to ∼9600 Xeon-Phi nodes; obtaining peak performance of 11.73-15.07 PFLOP/s and sustained performance of 11.41-13.27 PFLOP/s. At scale, their HEP architecture produces state-of-the-art classification accuracy on a dataset with 10 Million images, exceeding
that achieved by selections on high-level physics-motivated features. Their semi-supervised architecture successfully extracts weather patterns in a 15TB climate dataset. Their results demonstrate that Deep Learning can be optimized and scaled effectively on many-core, HPC systems.