>
Israeli Military Admits To Killing Palestinian Civilians Near Aid Sites in Gaza
'Dark Pools' Are Handling More Stock Trades. Wall Street Is Fighting Back.
Did the US Really Miss a Spy Device for 7 Years?
The McDonalds Ice Cream Conspiracy
xAI Grok 3.5 Renamed Grok 4 and Has Specialized Coding Model
AI goes full HAL: Blackmail, espionage, and murder to avoid shutdown
BREAKING UPDATE Neuralink and Optimus
1900 Scientists Say 'Climate Change Not Caused By CO2' – The Real Environment Movement...
New molecule could create stamp-sized drives with 100x more storage
DARPA fast tracks flight tests for new military drones
ChatGPT May Be Eroding Critical Thinking Skills, According to a New MIT Study
How China Won the Thorium Nuclear Energy Race
Sunlight-Powered Catalyst Supercharges Green Hydrogen Production by 800%
Intel researchers and parters developed supervised convolutional architectures for discriminating signals in high-energy physics data as well as semi-supervised architectures for localizing and
classifying extreme weather in climate data. Our Intelcaffe based implementation obtains ∼2TFLOP/s on a single Cori Phase-II Xeon-Phi node. We use a hybrid strategy employing synchronous node-groups, while using asynchronous communication across groups. They use this strategy to scale training of a single model to ∼9600 Xeon-Phi nodes; obtaining peak performance of 11.73-15.07 PFLOP/s and sustained performance of 11.41-13.27 PFLOP/s. At scale, their HEP architecture produces state-of-the-art classification accuracy on a dataset with 10 Million images, exceeding
that achieved by selections on high-level physics-motivated features. Their semi-supervised architecture successfully extracts weather patterns in a 15TB climate dataset. Their results demonstrate that Deep Learning can be optimized and scaled effectively on many-core, HPC systems.