>
US Lawmakers Shmooze with Zelensky at Munich Security Conference...
Scientists have plan to save the world by chopping down boreal forest...
New Coalition Aims To Ban Vaccine Mandates Across US
New Spray-on Powder Instantly Seals Life-Threatening Wounds in Battle or During Disasters
AI-enhanced stethoscope excels at listening to our hearts
Flame-treated sunscreen keeps the zinc but cuts the smeary white look
Display hub adds three more screens powered through single USB port
We Finally Know How Fast The Tesla Semi Will Charge: Very, Very Fast
Drone-launching underwater drone hitches a ride on ship and sub hulls
Humanoid Robots Get "Brains" As Dual-Use Fears Mount
SpaceX Authorized to Increase High Speed Internet Download Speeds 5X Through 2026
Space AI is the Key to the Technological Singularity
Velocitor X-1 eVTOL could be beating the traffic in just a year

Robots are an important type of molecular machine that automatically carry out complex nanomechanical tasks. DNA molecules are excellent materials for building molecular robots, because their geometric, thermodynamic, and kinetic properties are well understood and highly programmable. So far, the development of DNA robots has been limited to simple functions. Most DNA robots were designed to perform a single function: walking in a controlled direction. A few demonstrations included a second function combined with walking (for example, picking up nanoparticles or choosing a path at a junction). However, these relatively more complex functions were also more difficult to control, and the complexity of the tasks was limited to what the robot can perform within 3 to 12 steps. In addition, each robot design was tailored for a specific task, complicating efforts to develop new robots that perform new tasks by combining functions and mechanisms.